
VU Research Portal

Bifurcations in Network Dynamical Systems

Nijholt, E.C.

2018

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Nijholt, E. C. (2018). Bifurcations in Network Dynamical Systems. [PhD-Thesis - Research and graduation
internal, Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Mar. 2024

https://research.vu.nl/en/publications/86460f50-a237-4459-adc0-9e2ad45c28f4


CHAPTER 5

TRANSVERSALITY AND
GENERALIZED SYMMETRY

5.1 Abstract

We prove that a generic k-parameter bifurcation of a dynamical system with
a monoid symmetry occurs along a generalized kernel or center subspace of
a particular type. More precisely, any (complementable) subrepresentation
U is given a number KU and a number CU . A k-parameter bifurcation can
generically only occur along a generalized kernel isomorphic to U if k ≥ KU .
It can generically only occur along a center subspace isomorphic to U if
k ≥ CU . The numbers KU and CU depend only on the decomposition of
U into indecomposable subrepresentations. In particular, we prove that a
generic one-parameter steady-state bifurcation occurs along one absolutely
indecomposable subrepresentation. Likewise, it follows that a generic one-
parameter Hopf bifurcation occurs along one indecomposable subrepresen-
tation of complex or quaternionic type, or along two isomorphic absolutely
indecomposable subrepresentations. In order to prove these results, we show
that the set of endomorphisms with generalized kernel (or center subspace)
isomorphic to U is the disjoint union of a finite set of conjugacy invariant
submanifolds of codimension KU and higher (or CU and higher). The results
in this article hold for any monoid, including non-compact groups.



5.2. INTRODUCTION

5.2 Introduction

Symmetries play an important role in the study of dynamical systems. Equi-
variant dynamics, the mathematical discipline concerned with this interplay,
has correspondingly gained a lot of attention and has developed into a well
established field of research. It should be noted however, that many results
from this field require the symmetries in question to form a group, often a
finite one or a compact topological group. See for example [5, 6, 8, 9] for
more on equivariant dynamics.
Recent developments in the study of network dynamical systems have called
for a generalization of this. More precisely, it can be shown that under mild
conditions, a dynamical system with a network structure can be seen as
the restriction of an equivariant system to some invariant subspace. This
equivariant system is referred to as the fundamental network of the original
network, see Figure 5.1. Often the symmetries appearing in this latter net-
work system do not form a group, but rather a more relaxed structure such
as a semigroup, monoid (i.e. a semigroup with an identity) or category. See
[16, 4, 15, 19, 20, 18] for more on this formalism. Other authors have like-
wise linked network structures to more general algebraic concepts, such as
the groupoid formalism by Golubitsky and Stewart ([7]), or the categorical
approach by Lerman and Deville ([2]).

This article deals with the question of generic bifurcations in equivariant
systems for such generalized symmetries. Let f(x, λ) be a family of vector
fields, indexed by some parameter λ. It is known that for a bifurcation to
occur in the differential equation 9x = f(x, λ), often a certain condition on
the spectrum of the linearization Dxf has to hold. For example, the implicit
function theorem excludes (non-trivial) steady-state bifurcations unless the
matrix Dxf(x0, λ0) at the bifurcation point (x0, λ0) has a non-trivial ker-
nel. Furthermore, Hopf bifurcations are associated with a pair of complex-
conjugate eigenvalues of Dxf(x0, λ) passing through the imaginary axis as λ
varies. However, when considering generic one-parameter steady-state bifur-
cations, one does not expect the kernel of Dxf(x0, λ0) to be two-dimensional
or even bigger either, as a small perturbation of the family of vector fields
f(x, λ) would generically perturb the kernel to a lower dimensional one.
The situation is more complicated for equivariant systems, as the symme-
try might exclude certain spaces to appear as kernels or center subspaces,
thereby making other spaces more ‘likely’.
As it turns out, the correct generalization of a one-dimensional kernel in the
case of a compact Lie-group symmetry, is that of an irreducible subrepre-
sentation. As a one-dimensional space can be characterized by the property
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY
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Figure 5.1: A network (left) with its fundamental network (right). For convenience,
we have left out additional self-loops representing interior dynamics for all the cells
in both the networks. The network vector fields corresponding to the fundamental
network are exactly the vector fields with a linear monoid-symmetry, for which the
fundamental network is in fact the Cayley graph. The network vector fields for the
graph on the left correspond to those on the right restricted to a linear (synchrony)
subspace. This is reflected in the graphs by the fact that identifying cells 2 and 3
in the right network yields the left one, up to renumbering.

that it does not contain any non-trivial subspaces, so too can an irreducible
subrepresentation be defined by the property that it does not contain any
non-trivial invariant subspaces. One can further generalize this concept to
that of an absolutely irreducible subrepresentation, by imposing the con-
dition that the only symmetry-respecting endomorphisms of the space are
multiples of the identity. It can then be proven that for compact groups a
steady-state bifurcation occurs generically along one absolutely irreducible
subrepresentation of the symmetry. See Proposition 3.2 in Chapter XIII of
[9].
When the symmetries only form a monoid, one can define an indecomposable
subrepresentation as an invariant space that cannot be written as the direct
sum of two (non-trivial) invariant subspaces. Such an indecomposable sub-
representation is called absolutely indecomposable if the only symmetry pre-
serving endomorphisms are multiples of the identity, up to nilpotent maps.
It was shown in [20] (Theorem 6.2) that under a certain technical condition
on the representation of the symmetry-monoid, a steady-state bifurcation
occurs generically along one absolutely indecomposable subrepresentation.
In this article we prove the following more general result about generic k-
parameter bifurcations in monoid-symmetric dynamical systems. Note that
any group is a particular example of a monoid. One often calls an abso-
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5.2. INTRODUCTION

lutely indecomposable representation an indecomposable representation of
real type, after the algebra of its endomorphisms. Likewise, there are the
notions of complex type and of quaternionic type. Any (finite-dimensional)
indecomposable representation falls in either of these three classes. Our main
result is the following.

Theorem 5.2.1. Let W be a finite-dimensional representation space of a
monoid Σ. Let U ⊂W be an invariant subspace satisfying

U ∼=
r1⊕

WR
1 . . .

ru⊕
WR
u

c1⊕
WC

1 . . .

cv⊕
WC
v

h1⊕
WH

1 . . .

hw⊕
WH
w . (5.2.1)

Here, the WR
i , WC

i and WH
i are non-isomorphic indecomposable represen-

tations of real type, complex type and quaternionic type respectively, and the
numbers ri, ci and hi denote multiplicities in U . Suppose furthermore that
there exists an invariant subspace U ′ such that W = U ⊕ U ′. Then gener-
ically a k-parameter family of endomorphisms of W has an element with
generalized kernel isomorphic to U only when k is bigger or equal to

KU := r1 + · · ·+ ru + 2c1 + · · ·+ 2cv + 4h1 + · · ·+ 4hw .

Likewise, generically a k-parameter family of endomorphisms of W has an
element with center subspace isomorphic to U only when k is bigger or equal
to

CU := dr1/2e+ · · ·+ dru/2e+ c1 + · · ·+ cv + h1 + · · ·+ hw .

Here, dxe means x rounded up to the nearest integer. (It is not hard to see
that if such a U ′ does not exist, then U will not appear as a generalized
kernel or as a center subspace.)
More precisely, let End(W ) denote the set of all Σ-equivariant linear maps
from W to itself. We furthermore denote by Nil(U) the set of elements in
End(W ) with generalized kernel isomorphic to U and by Cen(U) the set of
elements in End(W ) with center subspace isomorphic to U . Then the set
Nil(U) is the union of a finite set of conjugacy invariant submanifolds of
codimension KU and higher. Likewise, Cen(U) is the union of a finite set
of conjugacy invariant submanifolds of codimension CU and higher.
Consequently, when Ω ⊂ Rk is some open parameter-space, the set

{f ∈ C∞(Ω,End(W )) | f(Ω) ∩Nil(U) = ∅}

is dense in the weak and strong topologies on C∞(Ω,End(W )) whenever
k < KU . Likewise, the set

{f ∈ C∞(Ω,End(W )) | f(Ω) ∩ Cen(U) = ∅}
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

is dense in the weak and strong topologies on C∞(Ω,End(W )) whenever
k < CU . Moreover, the sets

{f ∈ C∞(Ω,End(W )) | f(Ω) ∩Nil(U) 6= ∅}

and

{f ∈ C∞(Ω,End(W )) | f(Ω) ∩ Cen(U) 6= ∅}

contain a non-empty open set in C∞(Ω,End(W )) for k ≥ KU and k ≥ CU ,
respectively.

This result will be proven in several steps. In Section 5.4 we will show how
(the technical formulation of) the result follows, provided it holds in the
special case whenW = U . In Section 5.5 we then reduce the situation to one
that only involves three families of real algebras, essentially stripping away
the symmetry-monoid itself. As some of the results of this section have value
on their own, we have decided to split this reduction in three separate steps,
and to furthermore elaborate on quite some of the intermediate findings.
Next, Section 5.6 is dedicated to proving Theorem 5.2.1 in the forms of
Theorem 5.4.2 and Remark 5.6.9. For the proof of Theorem 5.4.2 we need
some technical results. These are proven in Sections 5.7 and 5.8. More
precisely, Section 5.7 serves as a short excursion into algebraic geometry
needed to prove a technical result. Section 5.8 then uses this result to count
the dimensions of the set of elements with a vanishing or purely imaginary
spectrum in the three reduced algebras that we obtain in Section 5.5. To
start off, Section 5.3 gives an overview of the results from representation
theory that we will be using.
Despite all sections working towards the single goal of proving Theorem 5.2.1,
it is best to think of this article as consisting of two separate parts. The first
part consists of Sections 5.3 till 5.6 and comprises the main discussion. The
second part is Sections 5.7 and 5.8 and could be thought of as an appendix
where we treat some of the harder geometrical results (where there is no given
symmetry anymore). Many of the results in the second part are known to
experts, but hard or even impossible to find in the literature. Furthermore,
an in depth study of these topics was needed to generalize some of the results
to for example matrices with quaternion entries. What is more, we believe
some of the results in Section 5.8 constitute meaningful results in geometry.
Whereas little to no knowledge of the geometrical techniques used in these
last two sections is required, a reader interested in only the main result of
this article can simply skip this second part.
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5.3 Preliminaries

In this section we present some basic results from the representation theory
of monoids. We furthermore fix the notation that will be used throughout
this article. It should be noted that we put no restrictions on the monoid Σ.
In particular, it may be finite or infinite, and it could correspond to a (non-
compact) topological group or Lie-group. It is, however, essential that the
representation space V is finite dimensional. Proofs and additional remarks
can be found in [4] and [20].

Definition 5.3.1. A monoid is a triple (Σ, e, ◦), where Σ is a set, e is an
element of Σ (called the unit) and ◦ is a map from Σ × Σ to Σ (notation:
x ◦ y ∈ Σ for x, y ∈ Σ). This triple has to satisfy the following properties:

1. (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ Σ

2. e ◦ x = x ◦ e = x for all x ∈ Σ.

Note that a group is a particular instance of a monoid. If one drops the
existence of a unit in the definition of a monoid (and therefore the second
condition), one obtains a semigroup. Note that any semigroup can be made
into a monoid by artificially adding a unit as an extra element to Σ. The
multiplication ◦ is then expanded to Σ ∪ {e} by imposing the second condi-
tion in the definition of a monoid.

If V is a finite dimensional vector space over a field K, then we denote
by MatK(V ) the space of K-linear maps from V to itself. We will often
drop the subscript K and simply write Mat(V ) when the underlying field
is clear. Furthermore, if we have V = Rn and K = R then we will write
Mat(R, n) := MatR(Rn). Likewise, we write Mat(C, n) := MatC(Cn) for the
space of complex matrices. Using this notation, we say that a representation
of the monoid Σ in the vector space V over K is a map φ from Σ to MatK(V )
satisfying:

1. φ(x◦ y) = φ(x)◦φ(y) for all x, y ∈ Σ, and with multiplication between
elements in MatK(V ) understood as composition of operators.

2. φ(e) = IdV .

A representation of a semigroup can be defined analogously, by dropping the
second condition. Given such a representation φ of a semigroup Σ, one ob-
tains a representation of the induced monoid Σ∪{e} by setting φ(e) := IdV .
As we will mostly be interested in those (linear) operators that commute
with all elements of the form φ(x), results will often not change if one passes
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

from a semigroup to its induced monoid. Likewise, if one has a subset S of a
monoid T , then one may often pass to the smallest monoid Σ ⊂ T containing
S. In this article a representation will always be over the field R. We also
note in passing that the maps φ(x) need by no means be invertible.

Given a monoid Σ and a representation (V, φ), a linear subspace W ⊂ V is
said to be invariant if it holds that φ(x) maps W into itself for all x ∈ Σ.
In that case, W becomes a representation space itself via the maps φ(x)|W .
We say that an invariant space W ⊂ V is complementable if there exists an
invariant space U ⊂ V such that V = W ⊕ U . It is in general not true that
every invariant subspace is complementable. If we have two representations
(V, φ) and (V,′ φ′), then a morphism between these two representations is a
linear map f : V → V ′ satisfying f ◦φ(x) = φ′(x)◦f for all x ∈ Σ. If f is fur-
thermore invertible, then we call it an isomorphism. Note that in that case,
it follows that f−1 ◦φ′(x) = φ(x) ◦ f−1, so that f−1 is also a morphism. We
call two representations isomorphic if there exists an isomorphism between
them. The space of morphisms between (V, φ) and itself wil be denoted by
End(V ) (Note that we suppress φ here, as we will often do in (V, φ) once φ
is fixed). Some examples of morphisms include the inclusion of (W,φ(•)|W )
in (V, φ) when W ⊂ V is invariant, and the projection of V = W ⊕ U onto
W when W and U are (complementable) invariant spaces.

An element of End(V ) can give rise to a number of invariant spaces. For
example, the image, kernel and more generally the span of the eigenvectors
of a real eigenvalue or pair of complex-conjugate eigenvalues is always an
invariant space. Furthermore, the span of the generalized eigenvectors of an
eigenvalue or pair of complex-conjugate eigenvalues is invariant and is in fact
complementable (by the span of the generalized eigenvectors of other eigen-
values). In particular, we define the generalized kernel of an endomorphism
to be the span of the generalized eigenvectors corresponding to the eigen-
value 0. Likewise, the center subspace of an endomorphism is the span of
the generalized eigenvectors corresponding to all eigenvalues with vanishing
real part. By the foregoing, the generalized kernel and center subspace of
an element of End(V ) are examples of complementable invariant subspaces.

Lastly, we say that a nonzero representation V is indecomposable if it cannot
be written as V = W ⊕ U for non-trivial invariant spaces W and U . Note
that an indecomposable representation may still have non-trivial invariant
subspaces.

The following result states that indecomposable representations can be seen
as the building blocks of other representations.
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5.3. PRELIMINARIES

Theorem 5.3.2 (The Krull-Schmidt theorem). Any (finite-dimensional)
representation space W is isomorphic to the direct sum of a finite number of
indecomposable representations. I.e. we have

W ∼= W1 ⊕W2 ⊕ . . .Wk , (5.3.1)

for certain indecomposable representations W1 till Wk. This decomposition
is unique in the following sense. If it also holds that

W ∼= W ′1 ⊕ . . .W ′l , (5.3.2)

for certain indecomposable representations W ′1 till W ′l , then k = l and we
have that Wi

∼= W ′i for all i, after renumbering.

The space End(W ) has some special properties in the case that W is inde-
composable.

Lemma 5.3.3 (The Fitting lemma). If W is an indecomposable representa-
tion of a monoid Σ, then every element A of End(W ) is either invertible, or
nilpotent (i.e satisfies An = 0 for some n ∈ N). Moreover, the set of nilpotent
elements of End(W ) forms an ideal. That is, if we have A,N,N ′ ∈ End(W )
with N and N ′ nilpotent and λ ∈ R, then AN , NA, N +N ′ and λN are all
nilpotent as well.

Definition 5.3.4. If we write Nil(W ) for the ideal of nilpotent endomor-
phisms of an indecomposable representationW , then it follows that the space
End(W )/Nil(W ) is a real associative division algebra of finite dimension. By
the Frobenius theorem, it follows that End(W )/Nil(W ) is isomorphic to ei-
ther R, C or H. Depending on which, we say that W is of real type, complex
type or quaternionic type. It can be shown that isomorphic indecomposable
representations are of the same type. An indecomposable representation
of real type is sometimes also referred to as an absolutely indecomposable
representation.

We will also make use of the following lemma.

Lemma 5.3.5. Let W1 and W2 be indecomposable representations of a
monoid Σ, and let f : W1 → W2 and g : W2 → W1 be morphisms. If
the morphism g ◦ f ∈ End(W1) is invertible, then W1 and W2 are isomor-
phic representations. Combining with Lemma 5.3.3, we see that if W1 and
W2 are non-isomorphic, then g ◦ f is necessarily nilpotent.
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5.4 Geometric Reduction

Definition 5.4.1. Let W be a finite dimensional representation space of
the monoid Σ and let W = U ⊕ U ′ be a decomposition of W into invariant
spaces. We denote by

Nil(U) ⊂ End(W ) (5.4.1)

those elements of End(W ) whose generalized kernel is isomorphic to U as
representations of Σ. In particular, Nil(W ) simply denotes the nilpotent
elements of End(W ). Likewise, we denote by

Cen(U) ⊂ End(W ) (5.4.2)

those elements of End(W ) whose center subspace is isomorphic to U .

A general finite dimensional invariant space W can be written as

W ∼=
r1⊕

WR
1 . . .

ru⊕
WR
u

c1⊕
WC

1 . . .

cv⊕
WC
v

h1⊕
WH

1 . . .

hw⊕
WH
w (5.4.3)

where the WK
i , K ∈ {R,C,H} are non isomorphic indecomposable repre-

sentations of real (R), complex (C) or quaternionic (H) type. If we are given
a decomposition W = U ⊕ V then we may furthermore write

U ∼=
r′1⊕

WR
1 . . .

r′u⊕
WR
u

c′1⊕
WC

1 . . .

c′v⊕
WC
v

h′1⊕
WH

1 . . .

h′w⊕
WH
w (5.4.4)

for some numbers r′1 ≤ r1, . . . h
′
w ≤ hw. We will hold on to this notation

for the rest of this section. The following result can be considered the core
result of this paper.

Theorem 5.4.2. In End(W ), the set Nil(U) is the disjoint union of a finite
set of embedded manifolds having codimension

KU := r′1 + · · ·+ r′u + 2c′1 + · · ·+ 2c′v + 4h′1 + · · ·+ 4h′w

or higher. Exactly one of these manifolds has codimension precisely equal to
this number. Furthermore, these manifolds are conjugacy invariant. That
is, if M denotes any of these manifolds and if A is an element of M and
C ∈ End(W ) is invertible, then CAC−1 is an element of M as well.
Likewise, the set Cen(U) is the disjoint union of a finite set of conjugacy
invariant embedded manifolds having codimension

CU := dr′1/2e+ · · ·+ dr′u/2e+ c′1 + · · ·+ c′v + h′1 + · · ·+ h′w

or higher. Here, dxe denotes x rounded up to the nearest integer. Exactly
one of these manifolds has codimension precisely equal to CU .
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In this section we will prove Theorem 5.4.2, under the assumption that
it holds in the special case when W = U . In the next sections we will then
prove Theorem 5.4.2 for U = W . More precisely, the following theorem will
be proven in the next sections.

Theorem 5.4.3. In End(W ), the set Nil(W ) is the disjoint union of a finite
set of conjugacy invariant embedded manifolds having codimension

KW = r1 + · · ·+ ru + 2c1 + · · ·+ 2cv + 4h1 + · · ·+ 4hw

or higher. Exactly one of these manifolds has codimension precisely equal to
this number.
Likewise, the set Cen(W ) is the disjoint union of a finite set of conjugacy
invariant embedded manifolds having codimension

CW = dr1/2e+ · · ·+ dru/2e+ c1 + · · ·+ cv + h1 + · · ·+ hw

or higher. Exactly one of these manifolds has codimension precisely equal to
this number.

In order to prove Theorem 5.4.2 from Theorem 5.4.3, we will need the follow-
ing, technical lemmas. Some of these will also play a major role in Section
5.8. Hence, they do not assume the result of Theorem 5.4.3. The first of
these lemmas is well known (see for instance [24]), but included here for
completeness. Furthermore, it demonstrates some techniques that will play
an important role in Section 5.8.

Lemma 5.4.4. Let A ∈ Mat(C, n) and B ∈ Mat(C,m) be square matrices
and denote by Mat(Cn,Cm) the space of complex m × n matrices. Define
the linear map

LA,B : Mat(Cn,Cm)→ Mat(Cn,Cm)

X 7→ XA−BX .
(5.4.5)

The eigenvalues of LA,B are exactly given by λ−µ for λ an eigenvalue of A
and µ an eigenvalue of B. In particular, this map is invertible if and only if
A and B have no eigenvalues in common.

Proof. Denote by {ei}mi=1 a basis such that B is in upper triangular form.
That is, we write

Bei = µiei +
∑
j<i

Bj,iej , (5.4.6)
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for (µ1, . . . µm) the set of eigenvalues of B. Likewise, we denote by {fi}ni=1

a basis such that AT is in upper triangular form:

AT fi = λifi +
∑
j<i

ATj,iej , (5.4.7)

for (λ1, . . . λn) the set of eigenvalues of AT . Here, AT denotes the entry-
wise transpose of A. In other words, we have (AT )i,j = Aj,i, so that the
eigenvalues of AT are those of A. We will first show that the set {eifTj }i,j
is a basis for the linear space Mat(Cn,Cm). By looking at the dimension
of Mat(Cn,Cm), this statement holds if and only if the eifTj are linearly
independent over C. To this end, let us write

m∑
i=1

n∑
j=1

ai,j(eif
T
j ) = 0 , (5.4.8)

for ai,j ∈ C. Let N ∈ Mat(C, n) be a matrix satisfying fTi Nfj = δi,j
(for example by setting N := CTC, where C maps the basis {fj}nj=1 to the
standard basis of Cn). Multiplying equation (5.4.8) by Nfk for a given value
of k yields

m∑
i=1

n∑
j=1

ai,j(eif
T
j )Nfk =

m∑
i=1

n∑
j=1

ai,jei(f
T
j Nfk) =

m∑
i=1

ai,kei = 0 . (5.4.9)

By linear independence of the basis {ei}mi=1 we see that ai,k = 0 for all i.
Since k was chosen arbitrary, it follows that ai,k = 0 for all i and k. This
proves that {eifTj }i,j is a basis for Mat(Cn,Cm).
Next, we order the set {eifTj }i,j lexicographically. That is, we say that
eif

T
j > ekf

T
l if i > k or if it holds that i = k and j > l. It follows that

LA,B(eif
T
j ) = (eif

T
j )A−B(eif

T
j ) = ei(A

T fj)
T − (Bei)f

T
j (5.4.10)

= ei(λjfj +
∑
k<j

ATk,jfk)T − (µiei +
∑
l<i

Bl,iel)f
T
j

= (λj − µi)(eifTj ) +
∑
k<j

ATk,j(eif
T
k )−

∑
l<i

Bl,i(elf
T
j )

= (λj − µi)(eifTj ) + {lexicographically lower order terms} .

We see that, with respect to the ordered basis {eifTj }i,j , the matrix of LA,B
is in upper diagonal form, with diagonal entries {(λj − µi)}i,j . This proves
the statement.
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5.4. GEOMETRIC REDUCTION

The following lemma will be key in proving Theorem 5.4.2 from Theorem
5.4.3. It can be seen as an extension of Lemma 6.3 from [20].

Lemma 5.4.5. Let L ∈ End(W ) be an equivariant linear map and denote
by Z ⊂ C any subset of the complex numbers. (In this article, Z will either
be {0} or the imaginary axis.) Write W = WZ ⊕WZc for the decomposition
of W into the space spanned by the generalized eigenvectors corresponding to
eigenvalues of L in Z (WZ) and in the complement of Z (WZc). Note that
both WZ and WZc are invariant spaces for the symmetry, as well as for L.
That is, L is in block diagonal form corresponding to this decomposition of
W . We write L1,1 := L|WZ

and L2,2 := L|WZc
for the two blocks.

Then, there exist an open neighborhood S ⊂ End(W ) containing L and
smooth maps M : S → End(W ), B1 : S → End(WZ) and B2 : S →
End(WZc) such that the following holds.

• M(L) = Id, B1(L) = L1,1, B2(L) = L2,2.

• M(X) is invertible for all X ∈ S.

• B1 and B2 are submersions.

• For all X ∈ S it holds that

M(X)XM(X)−1 =

ˆ

B1(X) 0
0 B2(X)

˙

(5.4.11)

corresponding to the decomposition W = WZ ⊕WZc .

Proof. LetM be the linear space of elements m ∈ End(W ) of the form

m =

ˆ

0 m1,2

m2,1 0

˙

(5.4.12)

with respect to the decomposition W = WZ ⊕WZc . Define the map
Ψ :M× End(W )→M given by

Ψ(m,X) =

ˆ

0 (exp(m)X exp(−m))1,2

(exp(m)X exp(−m))2,1 0

˙

. (5.4.13)

Here, exp(m) denotes the matrix exponential of m, defined by the usual
power series. Note that exp(m) is again an equivariant map, as the set of
equivariant maps is closed in the set of all linear maps. We will apply the
implicit function theorem to the map Ψ. First of all, we have Ψ(0, L) = 0,
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as L is block diagonal with respect to the given decomposition. Secondly,
the derivative at (0, L) in the direction of V ∈M is given by

DmΨ(0, L)V =

ˆ

0 [V,L]1,2
[V,L]2,1 0

˙

(5.4.14)

=

ˆ

0 V1,2L2,2 − L1,1V1,2

V2,1L1,1 − L2,2V2,1 0

˙

=

ˆ

0 LL2,2,L1,1
(V1,2)

LL1,1,L2,2
(V2,1) 0

˙

,

where [V,L] denotes the commutator between the two operators. Looking
at the eigenvalues of L1,1 and L2,2, we see that the difference between an
eigenvalue of the first and an eigenvalue of the second can never be 0. Hence,
it follows from Lemma 5.4.4 that the operators LL2,2,L1,1

and LL1,1,L2,2
are

bijections. As they moreover send equivariant maps to equivariant maps,
we conclude that they are bijective on the set of equivariant maps. By
the implicit function theorem, it therefore holds that there exists a smooth
map m from some open neighborhood S ⊂ End(W ) containing L to M
such that Ψ(m(X), X) = 0. It furthermore holds that m(L) = 0. By
setting M(X) := exp(m(X)), we get a map satisfying M(L) = Id and with
M(X) invertible for all X ∈ S. By construction, M(X)XM(X)−1 is of
block diagonal form. Finally, we set B1(X) := (M(X)XM(X)−1)1,1 and
B2(X) := (M(X)XM(X)−1)2,2, so that B1(L) = L1,1 and B2(L) = L2,2.
It remains to show that these two smooth maps are in fact submersions. For
this, it is enough to show that their derivatives have maximal rank at L. The
lemma is then proven by choosing S small enough so that the derivatives
of B1 and B2 have maximal rank throughout. The derivative of the map
X 7→M(X)XM(X)−1 at L in the direction of V ∈ End(W ) is given by

d

dt

ˇ

ˇ

ˇ

ˇ

t=0

M(L+ tV )(L+ tV )M(L+ tV )−1 (5.4.15)

=
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

exp(m(L+ tV ))(L+ tV ) exp(−m(L+ tV ))

=
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

(Id +m(L+ tV ) + . . . )(L+ tV )(Id−m(L+ tV ) + . . . )

=(Dm(L)V )L− L(Dm(L)V ) + V

= [Dm(L)V,L] + V .

As m(X) is an element of M for all X ∈ S and as L is block diagonal,
we see that [Dm(L)V,L]1,1 = 0 and [Dm(L)V,L]2,2 = 0. It follows that
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DB1(L)V = V1,1 and DB2(L)V = V2,2, which are indeed of full rank. This
proves the lemma.

Another, simple lemma that we will use is the following.

Lemma 5.4.6. Let A,B ∈ End(W ) be two endomorphisms that are conju-
gate by an equivariant map. That is, there exists an invertible M ∈ End(W )
such that B = MAM−1. As in Lemma 5.4.5, denote by Z ⊂ C any subset of
the complex numbers. Let WZ(X) be the span of the generalized eigenvectors
corresponding to eigenvalues of X ∈ End(W ) that lie in Z. Likewise, denote
by WZc(X) the span of the generalized eigenvectors corresponding to eigen-
values of X not in Z. Then it holds that WZ(A) and WZ(B) are isomorphic
representations, and likewise for WZc(A) and WZc(B). More precisely, M
restricts to isomorphisms M1 := M |WZ(A): WZ(A) → WZ(B) and M2 :=

M |WZc (A): WZc(A) → WZc(B), and we have B|WZ(B)= M1A|WZ(A)M
−1
1

and B|WZc (B)= M2A|WZc (A)M
−1
2 .

Proof. It can directly be verified that if v ∈ W is a generalized eigen-
vector of A for an eigenvalue λ ∈ C, then Mv is a generalized eigen-
vector of B = MAM−1 for the same eigenvalue λ. Hence we see that
WZ(B) = MWZ(A) and WZc(B) = MWZc(A). In particular, as we have
W = WZ(A) ⊕ WZc(A) = WZ(B) ⊕ WZc(B), we see that we may write
M = M1⊕M2 forM1 := M |WZ(A): WZ(A)→WZ(B) andM2 := M |WZc (A):
WZc(A)→WZc(B). M1 and M2 are furthermore both injective, and there-
fore both isomorphisms. Now let v ∈WZ(B) be given, then

M1A|WZ(A)M
−1
1 (v) = M1A|WZ(A)(M

−1
1 (v) +M−1

2 (0)) (5.4.16)

= M1A|WZ(A)M
−1(v) = M1AM

−1(v)

= MAM−1(v) = B(v) .

Therefore, B|WZ(B)= M1A|WZ(A)M
−1
1 . One likewise finds that B|WZc (B)=

M2A|WZc (A)M
−1
2 . This proves the lemma.

We are now in a position to prove Theorem 5.4.2, assuming Theorem 5.4.3.

Proof that Theorem 5.4.3 implies Theorem 5.4.2. We fix a decomposition
W = U ⊕ U ′. By Theorem 5.4.3, we may write

End(U) ⊃ Nil(U) =

k∐
i=1

Mi (5.4.17)

End(U) ⊃ Cen(U) =

l∐
i=1

Ni , (5.4.18)
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where the Mi and Ni are conjugacy invariant, embedded manifolds. In
End(W ) we define the sets M ′i , consisting of those endomorphisms A with
generalized kernel W0(A) isomorphic to U , for which there exists an isomor-
phism φ : W0(A)→ U such that φA|W0(A)φ

−1 ∈Mi. Analogously, we define
N ′i to be given by

N ′i := {A ∈ End(W ) | ∃φ : Wc(A)→ U iso, s.t. φA|W0(A)φ
−1 ∈ Ni} ,

(5.4.19)

where Wc(A) denotes the center subspace of A.
Note that if A is in some M ′i (or N ′i), then its generalized kernel (or center
subspace) is isomorphic to U . Conversely, if the generalized kernel of A is
isomorphic to U , then there exists an isomorphism φ : W0(A) → U . The
map φA|W0(A)φ

−1 ∈ End(U) is nilpotent, and hence contained in some Mi.
We conclude that A ∈ M ′i for some 1 ≤ i ≤ k. Likewise, if A has its center
subspace isomorphic to U , then A ∈ N ′i for some 1 ≤ i ≤ l. We conclude
that the union of the M ′i is exactly all elements in End(W ) with generalized
kernel isomorphic to U , and likewise for the center subspace case and the
N ′i .
First, we show that the definitions ofM ′i andN ′i are independent of the choice
of isomorphism φ. If φA|W0(A)φ

−1 is an element ofMi, and if ψ : W0(A)→ U
is any other isomorphism, then

ψA|W0(A)ψ
−1 = ψφ−1φA|W0(A)φ

−1φψ−1 (5.4.20)

= (ψφ−1)φA|W0(A)φ
−1(ψφ−1)−1 . (5.4.21)

As ψφ−1 ∈ End(U) and as Mi is conjugacy invariant, we conclude that
ψA|W0(A)ψ

−1 ∈ Mi as well. The same proof works for the N ′i . This
shows that the sets M ′i are in fact disjoint, and likewise for the N ′i . For,
if φA|W0(A)φ

−1 ∈Mi and ψA|W0(A)ψ
−1 ∈Mj for some isomorphisms φ and

ψ, then by the foregoing, φA|W0(A)φ
−1 ∈ Mj . As the Mi are disjoint, we

conclude that i = j. The same reasoning works to show that the N ′i are
disjoint sets.
Next, we show that none of the sets M ′i is empty. To this end, pick an
element B ∈Mi. It follows that the element

A :=

ˆ

B 0
0 IdU ′

˙

∈ End(U ⊕ U ′) = End(W ) (5.4.22)

belongs to M ′i (by choosing φ = IdU ). A similar proof shows that none of
the N ′i is empty.
It also holds that each M ′i and N ′i is conjugacy invariant. For, if A is an
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element of M ′i and B ∈ End(W ) is conjugate to A, then by Lemma 5.4.6
there exists an isomorphism M1 : W0(A)→W0(B) such that
M1A|W0(A)M

−1
1 = B|W0(B). By assumption, there exists an isomorphism

φ : W0(A) → U for which φA|W0(A)φ
−1 ∈ Mi. It follows that φM−1

1 :

W0(B) → U is an isomorphism satisfying (φM−1
1 )B|W0(B)(φM

−1
1 )−1 ∈ Mi.

This proves that B ∈M ′i as well. The proof is analogous for the N ′i

It remains to show that the M ′i and N ′i are embedded manifolds satisfying
the proposed conditions on their dimensions. We will in fact show that every
M ′i has the same codimension as its counterpart Mi, and likewise for the N ′i
with respect to the Ni.
To this end, let L ∈ M ′i be given. We will set W0 := W0(L) and write
W ◦0 := W ◦0 (L) for the span of the generalized eigenvectors of L correspond-
ing to its non-zero eigenvalues. It follows that there exists an isomorphism
φ : W0 → U such that φL|W0φ

−1 ∈ Mi. We fix such an isomorphism φ. By
Lemma 5.4.5 there exist an open neighborhood S ⊂ End(W ) containing L
and smooth submersions B1 : S → End(W0), B2 : S → End(W ◦0 ) such that
every element A ∈ S is conjugate to B1(A) ⊕ B2(A) ∈ End(W0 ⊕W ◦0 ) =
End(W ). It furthermore holds that B1(L) = L|W0

and B2(L) = L|W◦0 .
As B2(L) is invertible, there exists an open neighborhood T ⊂ End(W ◦0 )
containing B2(L) of only invertible linear operators. By redefining S as
S ∩B−1

2 (T ), we may therefore assume B2(A) to be invertible for all A ∈ S.

We claim that M ′i ∩ S is exactly the set of all elements A ∈ S for which
φB1(A)φ−1 ∈Mi. Because A ∈ S is conjugate to B1(A)⊕B2(A), it follows
from the conjugacy invariance of M ′i that A is an element of M ′i if and only
if B1(A) ⊕ B2(A) is. Therefore, let us first assume B1(A) ⊕ B2(A) is an
element of M ′i . It follows that the generalized kernel of B1(A) ⊕ B2(A)
is isomorphic to U , and therefore to W0. As B2(A) is furthermore as-
sumed to be invertible, we see that the generalized kernel of B1(A)⊕B2(A)
is necessarily contained in W0. Hence, we conclude equality of the two
spaces, i.e. W0(B1(A)⊕B2(A)) = W0. In particular, we see that (B1(A)⊕
B2(A))|W0(B1(A)⊕B2(A))= B1(A). As B1(A) ⊕ B2(A) ∈ M ′i , it holds that
ψB1(A)ψ−1 ∈ Mi for some isomorphism ψ : W0 → U . By the first part of
the proof, we also get φB1(A)φ−1 ∈Mi.
Conversely, if A ∈ S is such that φB1(A)φ−1 ∈Mi, then the generalized ker-
nel of B1(A)⊕B2(A) containsW0. As B2(A) is invertible, we see that exactly
W0(B1(A)⊕B2(A)) = W0. From φ(B1(A)⊕B2(A))|W0φ

−1 = φB1(A)φ−1 ∈
Mi we conclude that B1(A)⊕B2(A) ∈M ′i , and therefore A ∈M ′i .
From this we see that M ′i ∩ S = B−1

1 (φ−1Miφ). In particular, as B1 is a
submersion, M ′i is an embedded submanifold of End(W ) of the same codi-
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mension as Mi.

The case for the center subspace is completely analogous. For a given
L ∈ N ′i , choose an open neighborhood S on which any element A is conjugate
to B1(A)⊕B2(A). Here, the direct sum is with respect to the decomposition
W = Wc(L)⊕W ◦c (L), whereW ◦c (L) corresponds to all eigenvalues away from
the imaginary axis. Analogous to the case of the M ′i , we want to assume
that for all A ∈ S, B2(A) has only eigenvalues away from the imaginary axis.
This can be assumed if it holds that the set of elements in End(W ◦c ) with
no purely imaginary eigenvalues is an open set. However, note that there
exists a continuous inclusion from End(W ◦c ) into Mat(C, n) for some n. In
Mat(C, n), the set of matrices with no purely imaginary eigenvalues is indeed
an open set. See for example [13, p. 118] or see [1] for a short proof using
Rouché’s theorem. Therefore, the set of elements in End(W ◦c ) with no purely
imaginary eigenvalues is indeed open. It follows that N ′i∩S = B−1

1 (φ−1Niφ),
where φ : Wc(L) → U is any (fixed) isomorphism. Therefore each N ′i is an
embedded submanifold of the same codimension as Ni. This proves the
theorem.

5.5 Algebraic Reduction

The proof of Theorem 5.4.3 consists of two steps. First, we reduce the prob-
lem from one involving End(W ) to one involving certain matrix algebras
that are easier to analyse. The most important aspect of this reduction is
the fact that it does not (in essence) change the spectrum of the endomor-
phisms. The second step is to then construct the manifolds in these reduced
spaces that contain all matrices with a vanishing or purely imaginary spec-
trum, and to count their dimensions. This section is dedicated to the first
step, whereas Sections 5.7 and 5.8 will cover the second. In Section 5.6 we
present the proof of Theorem 5.4.3, using the results from this section and
from Sections 5.7 and 5.8.

The first step comes down to three consecutive reductions. In the first reduc-
tion, we isolate an ideal in End(W ) whose cosets have a constant spectrum.
That is, the algebraic multiplicity of the eigenvalues of an endomorphism
does not change when one adds an element of this ideal. We furthermore
identify a full set of representatives for the cosets of this ideal. In the second
reduction, we show that choosing different generators for the real, complex
and quaternionic structure does not change the eigenvalues of the endomor-
phism, and has a predictable effect on the algebraic multiplicities. In the
third step, we further reduce the problem to one involving three families of
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algebras. This last reduction forgets about some of the eigenvalues. How-
ever, the property of having a vanishing or purely imaginary spectrum is still
respected. Throughout this section, we have chosen to elaborate on quite
some intermediate results, as we believe they have significance outside of the
proof of Theorem 5.4.3 as well.

5.5.1 The First Reduction
In this part, we identify an ideal in End(W ) whose cosets have a constant
spectrum. We furthermore identify a suitable set of representatives for these
cosets. The main tool in this subsection will be the following:

Definition 5.5.1. Writing

W ∼=
r1⊕

WR
1 . . .

ru⊕
WR
u

c1⊕
WC

1 . . .

cv⊕
WC
v

h1⊕
WH

1 . . .

hw⊕
WH
w , (5.5.1)

we fix an isomorphism betweenW and the right hand side of equation (5.5.1).
We may then denote any element of End(W ) as a matrix with entries formed
by equivariant maps between two (isomorphic or non-isomorphic) indecom-
posable components of (5.5.1). We denote by J ⊂ End(W ) the set of all
elements for which there are no isomorphisms among the entries of this ma-
trix. Equivalently, J consists of those endomorphisms for which there are
only nilpotent entries between isomorphic components, alongside entries be-
tween non-isomorphic components. We will later see in Corollary 5.5.4 that
this definition is independent of the chosen isomorphism between the right
hand side and the left hand side of equation (5.5.1).

Example 5.5.2. Let W be given by

W ∼= WR
1 ⊕WR

1 ⊕WC
1 , (5.5.2)

where WR
1 and WC

1 are (necessarily non-isomorphic) indecomposable repre-
sentations of real and complex type, respectively. An element A ∈ End(W )
may then be written with respect to this decomposition as

A =

¨

˝

a Id +N1,1 b Id +N1,2 A1,3

c Id +N2,1 d Id +N2,2 A2,3

A3,1 A3,2 e Id +fI +N3,3

˛

‚ , (5.5.3)

for a, b, . . . f ∈ R. Here, Ni,j denotes a nilpotent map between isomorphic
representations and I ∈ End(WC

1 ) is an isomorphism such that {[Id], [I]} ⊂
End(WC

1 )/Nil(WC
1 ) generates a complex structure. It follows that A is an

element of J if and only if a = b = · · · = f = 0. 4
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Proposition 5.5.3. The set J is a (two-sided) ideal in the algebra End(W ).

Proof. Recall that Nil(WK
i ) is an ideal in End(WK

i ) for every indecompos-
able representation WK

i . In particular, Nil(WK
i ) is a linear subspace of the

vector space End(WK
i ). From this it follows that J is a linear subspace of

End(W ).
To prove that it is an ideal, let us denote the indecomposable compo-
nents of W (i.e. WR

1 (r1 times) up to WH
w (hw times)) by W1, . . .Wk for

k = r1 + . . . ru + c1 + . . . cv + h1 + . . . hw. Let us furthermore denote the
entries of A ∈ End(W ) and X ∈ J by A = (Ai,j) and X = (Xi,j) with
respect to this decomposition of W . If p and q are indices such that Wp is
isomorphic to Wq, then we have

(AX)p,q =

k∑
l=1

Ap,lXl,q =
∑
l∈P (p)

Ap,lXl,q +N . (5.5.4)

Here P (p) denotes the set of indices of representations isomorphic toWp and
N is some nilpotent map. Now, because X is an element of J , we know that
Xl,q is an element of Nil(Wp) for all l ∈ P (p). Using the fact that Nil(Wp) is
an ideal in End(Wp) we conclude that the entire term (AX)p,q is nilpotent.
Since this holds for all p and q such that Wp is isomorphic to Wq, we see
that AX ∈ J . This proves that J is a left ideal in End(W ). The proof that
it is a right ideal is similar, which concludes the proof.

Corollary 5.5.4. The ideal J is independent of the decomposition of W
into indecomposable representations.

Proof. Let

d0, d1 : W →W1 ⊕ . . .⊕Wk

denote two identifications of W with the sum of indecomposable representa-
tions W1 till Wk. We will furthermore denote by

J ′ ⊂ End(W1 ⊕ . . .⊕Wk)

the ideal of endomorphisms without isomorphisms among the entries. We
have to show that

d−1
0 J ′d0 = d−1

1 J ′d1 . (5.5.5)

However, from the fact that J ′ is an ideal it follows that

(d1d
−1
0 )J ′(d0d

−1
1 ) ⊂ J ′ , (5.5.6)
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and

(d0d
−1
1 )J ′(d1d

−1
0 ) ⊂ J ′ . (5.5.7)

This shows that equation (5.5.5) indeed holds, which concludes the proof.

Proposition 5.5.5. Let A ∈ End(W ) and let X ∈ J . The set of eigenvalues
of A, counted with algebraic multiplicity, is the same as that of A + X. In
other words, the map assigning the set of eigenvalues to an endomorphism
descends to a map on End(W )/J . In particular, we have that J ⊂ Nil(W ).

To prove Proposition 5.5.5 we need the following useful lemma. This result is
known to experts, but included here for completeness and for its significance
throughout this section.

Lemma 5.5.6. Let A,B ∈ Mat(C, n) (or in particular Mat(R, n)) be two n
times n matrices such that the following identities hold

tr(A) = tr(B)

tr(A2) = tr(B2)

...
tr(An) = tr(Bn) ,

(5.5.8)

then the set of eigenvalues of A and B, counted with algebraic multiplicity,
are the same.

Proof. Let (λ1, . . . λn) and (µ1, . . . µn) denote the eigenvalues of A and B, re-
spectively (taking into account algebraic multiplicity). We see that tr(Ak) =
pk(λ1 . . . λn) for all k ≥ 0, where pk is the power sum symmetric polynomial
given by

pk(x1., . . . xn) = xk1 + · · ·+ xkn . (5.5.9)

It is known that these polynomials form a basis of the symmetric polyno-
mials. In other words, every symmetric polynomial in n variables can be
written as a polynomial expression of the functions p0 until pn. (Note that
p0 := n). See [22, p. 2-3]. In particular, the coefficients of the polynomial

(x− λ1)(x− λ2) . . . (x− λn) (5.5.10)

are symmetric polynomials in the variables λ1 till λn. It follows that they
can be expressed in the symmetric polynomials p0 till pn. Therefore, they
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are determined by the values tr(Ak) = pk(λ1 . . . λn) for k ≤ n. We conclude
that the polynomial (5.5.10) is equal to the polynomial

(x− µ1)(x− µ2) . . . (x− µn) , (5.5.11)

and from this we see that the roots (λ1, . . . λn) and (µ1, . . . µn) coincide.
This proves the lemma.

Proof of Proposition 5.5.5. We first note that tr(X) = 0 for all X ∈ J .
This follows from the fact that X has only nilpotent maps as its diagonal
entries. In particular, we see that tr(A) = tr(A + X) for all A ∈ End(W ).
Furthermore, from the fact that J is an ideal in End(W ) it follows that
(A + X)m = Am + Xm for some Xm ∈ J and for all m > 0. From this
we conclude that tr((A + X)m) = tr(Am) for all m > 0. The claim of
the theorem now follows from applying Lemma 5.5.6 to A and A + X. In
particular, we conclude that X has only 0 as an eigenvalue and is hence
nilpotent.

Before we move on, it will be convenient to introduce a full set of rep-
resentatives for the classes of End(W )/J . To this end, let Wi be an in-
decomposable representation. If Wi is of quaternionic type, we fix iso-
morphisms {Idi, Ii, Ji,Ki} ⊂ End(Wi) such that {[Idi], [Ii], [Ji], [Ki]} ⊂
End(Wi)/Nil(Wi) generates the quaternionic structure on End(Wi)/Nil(Wi).
Likewise we will have that [Idi] ∈ End(Wi)/Nil(Wi) generates the real
structure on End(Wi)/Nil(Wi) if Wi is of real type and that {[Idi], [Ii]} ⊂
End(Wi)/Nil(Wi) generates the complex structure on End(Wi)/Nil(Wi) if
Wi is of complex type. We note in passing that Idi ∈ End(Wi) may be
chosen to equal the identity operator IdWi

. As a matter of fact, because
Id2
Wi

= IdWi
and because there is only one non-zero idempotent element in

any division ring, we see that necessarily Idi = IdWi
+N for any nilpotent

element N . Therefore, we will always choose Idi to be IdWi
.

Given this choice of generators, we will construct out of an endomorphism
A ∈ End(W ) an endomorphism DA ∈ End(W ) that only differs from A by
an element of J . To this end, we write

W ∼=
r1⊕

WR
1 . . .

ru⊕
WR
u

c1⊕
WC

1 . . .

cv⊕
WC
v

h1⊕
WH

1 . . .

hw⊕
WH
w

=

k⊕
i=1

Wi ,

(5.5.12)

for k = r1 + . . . ru+c1 + . . . cv+h1 + . . . hw and where eachWi is equal to one
of the WK

j , K ∈ {R,C,H} from the first line of (5.5.12). If p, q ∈ {1. . . . k}
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are such that Wp = Wq, then Ap,q can be written uniquely as

Ap,q =

 a Idp +N if Wp is of real type
a Idp +bIp +N if Wp is of complex type
a Idp +bIp + cJp + dKp +N if Wp is of quaternionic type.

(5.5.13)

Here, a, b, c, d ∈ R and N ∈ End(Wp) is a nilpotent endomorphism. (Note
that Idp = Idq, Ip = Iq and so on, as we assume Wp = Wq. In other words,
if some of the Wi in equation (5.5.12) are the same, then they are given the
same generators for the division algebra). We then define (DA)p,q by simply
removing the nilpotent terms:

(DA)p,q :=

 a Idp if Wp is of real type
a Idp +bIp if Wp is of complex type
a Idp +bIp + cJp + dKp if Wp is of quaternionic type.

(5.5.14)

Finally, for p and q such that Wp and Wq are non-isomorphic, we set

(DA)p,q := 0 . (5.5.15)

As a result, DA is a block-diagonal endomorphism, where the blocks corre-
spond to isomorphic representations (sometimes referred to as the isotypical
components of the representation). By construction, we see that A and DA

differ only by an element of J . What is more, if A and B in End(W ) are in
the same coset with respect to J , then the real numbers a, b, c and d as in
equation (5.5.13) will have to be the same. From this we see that necessarily
DA = DB . We conclude that the elements DA for A ∈ End(W ) form a full
set of representatives for the cosets of J .

Example 5.5.7. As in Example 5.5.2, let W be given by

W = WR
1 ⊕WR

1 ⊕WC
1 , (5.5.16)

where WR
1 and WC

1 are indecomposable representations of real and complex
type, respectively. An element A ∈ End(W ) is given with respect to this
decomposition as

A =

¨

˝

a Id +N1,1 b Id +N1,2 A1,3

c Id +N2,1 d Id +N2,2 A2,3

A3,1 A3,2 e Id +fI +N3,3

˛

‚ . (5.5.17)
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It follows that DA is the block diagonal matrix

DA =

¨

˝

a Id b Id 0
c Id d Id 0
0 0 e Id +fI

˛

‚ . (5.5.18)

4

As A and DA differ by an element of J , it follows from Proposition 5.5.5
that they have the same eigenvalues, counted with algebraic multiplicity.
Furthermore, as the set of endomorphisms {DA | A ∈ End(W )} forms a
complete set of representatives for the equivalence classes of End(W )/J , we
see that we can define any map on End(W )/J by specifying its value on the
elements DA.
Note that DA +DB = DA+B and µ ·DA = Dµ·A for all A,B ∈ End(W ) and
µ ∈ R. It does however not hold that DADB = DAB . Indeed, the element
DADB is again a block diagonal endomorphism, but it may have nilpotent
terms among its entries. To realize this, we note that for example the identity
[I]2 = −[Id] for [I] ∈ End(WC

i )/Nil(WC
i ) does not imply I2 = − Id, but

rather I2 = − Id +N for some nilpotent term N . This seems to suggest that
DADB and DAB differ only by an element of J , which the following theorem
confirms.

Proposition 5.5.8. Let {Ai}mi=1 ⊂ End(W ) be any finite set of endomor-
phisms, then the following holds:

m∏
i=1

DAi −Dp
∏m
i=1 Aiq

∈ J . (5.5.19)

Proof. Given A ∈ End(W ), we denote by A + J the set of endomorphisms
that differ from A by an element of J . We have already seen that DAi ∈
Ai + J for all i ∈ {1, . . .m}. Consequently, it follows that

m∏
i=1

DAi ∈
m∏
i=1

(Ai + J ) ⊂

˜

m∏
i=1

Ai

¸

+ J . (5.5.20)

Since it also holds that

Dp
∏m
i=1 Aiq

∈

˜

m∏
i=1

Ai

¸

+ J , (5.5.21)

we see that
∏m
i=1DAi and Dp

∏m
i=1 Aiq

indeed differ by an element of J . This
proves the claim.
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5.5.2 The Second Reduction
Our goal is to define a map from End(W )/J to a space where it is easier
to identify exactly those matrices that have a specified condition on their
eigenvalues. Since the set {DA | A ∈ End(W )} forms a complete set of
representatives for the equivalence classes of End(W )/J , we may define
this map by giving its value on endomorphisms of the form DA. Since
DA is a block diagonal matrix, where the blocks correspond to isomorphic
indecomposable representations, we will first focus our attention on the case
that W is the direct sum of isomorphic indecomposable representations.
The key point will be that we may replace I, J and K by any other real
representation of the quaternionic (or complex, or real) numbers, without
losing information about the eigenvalues. More specifically, we make the
following construction.

Definition 5.5.9. Let Q := {Ĩ , J̃, K̃} ⊂ Mat(R,m) denote any three m×m
matrices such that R Idm⊕RĨ⊕RJ̃⊕RK̃ has a quaternionic structure. That
is, we have the identities

Ĩ2 = J̃2 = K̃2 = Ĩ J̃K̃ = − Idm . (5.5.22)

Given an element

A ∈ End

˜

hi⊕
WH
i

¸

,

we may write

Ap,q = ap,q Id +bp,qI + cp,qJ + dp,qK +Np,q , (5.5.23)

for p, q ∈ {1, . . . hi} and where Id, I, J,K ∈ End(WH
i ) generate the quater-

nionic structure on End(WH
i )/Nil(WH

i ). Here we furthermore have that
ap,q, bp,q, cp,q and dp,q are real numbers and that Np,q ∈ End(WH

i ) is a
nilpotent endomorphism. From A, we can now construct the element

AQ ∈ Mat

˜

hi⊕
Rm

¸

,

given by

(AQ)p,q := ap,q Idm +bp,q Ĩ + cp,qJ̃ + dp,qK̃ . (5.5.24)

Similarly, if

A ∈ End

˜

ki⊕
WK
i

¸

, K ∈ {R,C}
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has components of complex or real type, we can define AQ corresponding to
some real representation Q of the complex or real numbers. For example,
given a matrix Ĩ ⊂ Mat(R,m) satisfying Ĩ2 = − Idm, and writing

A =

¨

˚

˝

a1,1 Id +b1,1I +N1,1 · · · a1,ci Id +b1,ciI +N1,ci
...

. . .
...

aci,1 Id +bci,1I +Nci,1 · · · aci,ci Id +bci,ciI +Nci,ci

˛

‹

‚

, (5.5.25)

for an element

A ∈ End

˜

ci⊕
WC
i

¸

,

we get

AQ =

¨

˚

˝

a1,1 Idm +b1,1Ĩ · · · a1,ci Idm +b1,ci Ĩ
...

. . .
...

aci,1 Idm +bci,1Ĩ · · · aci,ci Idm +bci,ci Ĩ

˛

‹

‚

. (5.5.26)

The following theorem relates the eigenvalues of A and AQ.

Proposition 5.5.10. Let n be the dimension of WK
i and let Q ⊂ Mat(R,m)

be a representation of the division algebra K by real m×m matrices. Then,
a complex number λ is an eigenvalue of A if and only it is an eigenvalue
of the matrix AQ. Furthermore, if we denote the algebraic multiplicity of λ
in A by mλ and its algebraic multiplicity in AQ by m′λ then these numbers
satisfy

mλ ·m = m′λ · n (5.5.27)

In order to prove Proposition 5.5.10 we will need the following useful lemma.

Lemma 5.5.11. Let U and V be two (real or complex) finite dimensional
vector spaces of the same dimension, and let A ⊂ Mat(U,U) and B ⊂
Mat(V, V ) be two sub-algebras of the algebras of linear operators. Suppose
furthermore that ψ : A → B is a map satisfying

• ψ(A1A2) = ψ(A1)ψ(A2) for all A1, A2 ∈ A ,

• tr(ψ(A)) = tr(A) for all A ∈ A .

Then, A and ψ(A) have the same eigenvalues, counted with algebraic multi-
plicity.
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Proof. From the properties of ψ it follows that

tr(ψ(A)n) = tr(ψ(An)) = tr(An) , (5.5.28)

for all n > 0 and A ∈ A. Note furthermore that tr(A0) = dim(U) =
dim(V ) = tr(ψ(A)0). It follows from Lemma 5.5.6 that the eigenvalues of
A and ψ(A), counted with algebraic multiplicity, coincide. This proves the
lemma.

Proof of Proposition 5.5.10. From the operator

A ∈ End

˜

ki⊕
WK
i

¸

we may construct the operator

Idm⊗A ∈ Mat

˜

Rm ⊗
ki⊕
WK
i

¸

.

Note that a value λ ∈ C is an eigenvalue of A with algebraic multiplicity
mλ, if and only if it is an eigenvalue of Idm⊗A with algebraic multiplicity
mλ ·m. Likewise, for

AQ ∈ Mat

˜

ki⊕
Rm

¸

we may construct

Idn⊗AQ ∈ Mat

˜

Rn ⊗
ki⊕

Rm
¸

,

and a value λ ∈ C is an eigenvalue of AQ with algebraic multiplicity m′λ, if
and only if it is an eigenvalue of Idn⊗AQ with algebraic multiplicity m′λ ·n.
Our aim is to apply Lemma 5.5.11 to the map

ψ′Q :

{
Idm⊗A | A ∈ End

˜

ki⊕
WK
i

¸}
⊂ Mat

˜

Rm ⊗
ki⊕
WK
i

¸

→

{
Idn⊗B | B ∈ Mat

˜

ki⊕
Rm

¸}
⊂ Mat

˜

Rn ⊗
ki⊕

Rm
¸

Idm⊗A 7→ Idn⊗AQ

(5.5.29)
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Note that by construction we have

dim

˜

Rm ⊗
ki⊕
WK
i

¸

= dim

˜

Rn ⊗
ki⊕

Rm
¸

, (5.5.30)

both being equal to ki ·m · n.

The first thing to show is that

ψ′Q(Idm⊗A · Idm⊗B) = ψ′Q(Idm⊗A) · ψ′Q(Idm⊗B)

for all A,B ∈ End

˜

ki⊕
WK
i

¸

.
(5.5.31)

To this end, let us write

Ai,j = ai,j,0 Id +ai,j,1I + ai,j,2J + ai,j,3K +NA
i,j , (5.5.32)

and

Bi,j = bi,j,0 Id +bi,j,1I + bi,j,2J + bi,j,3K +NB
i,j , (5.5.33)

where the terms NA
i,j and NB

i,j are nilpotent. We see that

(AB)i,j =

ki∑
l=1

(ai,l,0 Id +ai,l,1I + ai,l,2J + ai,l,3K +NA
i,l)

· (bl,j,0 Id +bl,j,1I + bl,j,2J + bl.j,3K +NB
l,j)

= ci,j,0 Id +ci,j,1I + ci,j,2J + ci,j,3K +Ni,j ,

(5.5.34)

for a nilpotent term Ni,j and where the coefficients ci,j,h are determined by
the regular quaternionic (or real, or complex) multiplication. That is, we
have

ki∑
l=1

(ai,l,0 + ai,l,1ĩ+ ai,l,2j̃ + ai,l,3k̃)(bl,j,0 + bl,j,1ĩ+ bl,j,2j̃ + bl,j,3k̃)

= ci,j,0 + ci,j,1ĩ+ ci,j,2j̃ + ci,j,3k̃

(5.5.35)

in H = span{1, ĩ, j̃, k̃}. (We use tildes to distinguish from indices.) It follows
that

([AB]Q)i,j = ci,j,0 Idm +ci,j,1Ĩ + ci,j,2J̃ + ci,j,3K̃ . (5.5.36)
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On the other hand, we see that

(AQ)i,j = ai,j,0 Idm +ai,j,1Ĩ + ai,j,2J̃ + ai,j,3K̃ , (5.5.37)

and

(BQ)i,j = bi,j,0 Idm +bi,j,1Ĩ + bi,j,2J̃ + bi,j,3K̃ , (5.5.38)

from which it follows that

(AQBQ)i,j = ci,j,0 Idm +ci,j,1Ĩ + ci,j,2J̃ + ci,j,3K̃ . (5.5.39)

Comparing expressions (5.5.36) and (5.5.39) we see that (AB)Q = AQBQ.
From this it follows that Idn⊗(AB)Q = Idn⊗(AQBQ) and hence that in-
deed ψ′Q(Idm⊗A · Idm⊗B) = ψ′Q(Idm⊗A) · ψ′Q(Idm⊗B).

Finally, we have to show that tr(Idm⊗A) = tr(ψ′Q(Idm⊗A)). For this, let
S ∈ Mat(R, s) be any real s × s matrix satisfying S2 = − Ids +N for some
nilpotent matrix N ∈ Mat(R, s) (possibly the zero matrix). It follows that
the eigenvalues of S satisfy the equation λ2 = −1 and are hence all equal to
i or −i. As the matrix S is real, it follows that the algebraic multiplicity of
i is the same as that of −i, and we conclude that necessarily tr(S) = 0. In
particular, we see that

tr(I) = tr(J) = tr(K) = tr(Ĩ) = tr(J̃) = tr(K̃) = 0 . (5.5.40)

Using this, we calculate the trace of A as

tr(A) =

ki∑
l=1

tr(Al,l) =

ki∑
l=1

tr(al,l,0 IdWK
i

) = n ·
ki∑
l=1

al,l,0 . (5.5.41)

It follows that

tr(Idm⊗A) = mn ·
ki∑
l=1

al,l,0 . (5.5.42)

Likewise, we argue that

tr(AQ) =

ki∑
l=1

tr(al,l,0 Idm) = m ·
ki∑
l=1

al,l,0 , (5.5.43)

and hence that

tr(Idn⊗AQ) = mn ·
ki∑
l=1

al,l,0 . (5.5.44)
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We conclude that indeed tr(Idm⊗A) = tr(ψ′Q(Idm⊗A)). From Lemma
5.5.11 we now see that the numbers mλ and m′λ are indeed related by the
identity mλ ·m = m′λ · n. This proves the theorem.

Remark 5.5.12. The matrix AQ can be seen as an element of Mat(R, ki) ⊗
Mat(R,m). It will often be convenient to use the matrix
AQ ∈ Mat(R,m)⊗Mat(R, ki) instead though, which is simply AQ conjugated
by the natural braiding isomorphism

B : Rki ⊗ Rm → Rm ⊗ Rki . (5.5.45)

In particular AQ and AQ have the same eigenvalues, counted with algebraic
multiplicity. 4

Definition 5.5.13. LetQ be a particular choice of real matrices representing
the division algebra End(WK

i )/Nil(WK
i ). We denote by RQki , C

Q
ki

and HQki
the linear space of all matrices AQ for A ∈ End

´⊕kiWK
i

¯

when WK
i is of

real, complex and quaternionic type, respectively.

We will now make a particular choice for the representation Q of the division
algebra K. If K = R then we will represent 1 ∈ R simply by Id1 ∈ Mat(R, 1).
For K = C we will choose Id2 ∈ Mat(R, 2) and

Ĩ :=

ˆ

0 1
−1 0

˙

∈ Mat(R, 2) . (5.5.46)

For K = H we choose Id4 ∈ Mat(R, 4) and

Ĩ :=

¨

˚

˚

˝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

˛

‹

‹

‚

, (5.5.47)

J̃ :=

¨

˚

˚

˝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

˛

‹

‹

‚

(5.5.48)

and

K̃ :=

¨

˚

˚

˝

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

˛

‹

‹

‚

, (5.5.49)
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all in Mat(R, 4). It is easily verified that Ĩ2 = J̃2 = K̃2 = Ĩ J̃K̃ = − Id4.
With this specific choice of Q, we get the following algebras.

RQn = Mat(R, n)

CQn =

{ˆ
A B
−B A

˙

, A,B ∈ Mat(R, n)

}

HQn =


¨

˚

˚

˝

A B C D
−B A −D C
−C D A −B
−D −C B A

˛

‹

‹

‚

, A,B,C,D ∈ Mat(R, n)


. (5.5.50)

We will sometimes write KQn to denote one of these algebras when the type
(real, complex or quaternionic) is clear. We furthermore define maps

ψQK,ki : End

˜

ki⊕
WK
i

¸

→ KQki

A 7→ AQ

(5.5.51)

for K ∈ {R,C,H}. (Here, KQki denotes R
Q
ki

when K = R, CQki when K = C

and HQki when K = H.) We will sometimes omit the subscripts in ψQK,ki and
simply write ψQ when this data is clear from context. It follows from the
proof of Proposition 5.5.10 that the map A 7→ AQ is a morphism of unitary
algebras. Therefore, so is the map ψQ. It can furthermore be seen that
this map is surjective with kernel J ⊂ End

´⊕kiWK
i

¯

. It also follows from
Proposition 5.5.10 and Remark 5.5.12 that a value λ ∈ C is an eigenvalue of
A if and only if it is an eigenvalue of ψQ(A), where Proposition 5.5.10 gives
more detailed information about the algebraic multiplicity.

We now return to the more general setting where W is given by the direct
sum of (not necessarily isomorphic) indecomposable representations:

W :=

r1⊕
WR

1 . . .

ru⊕
WR
u

c1⊕
WC

1 . . .

cv⊕
WC
v

h1⊕
WH

1 . . .

hw⊕
WH
w . (5.5.52)

Recall that an element DA ∈ End(W ) is of block diagonal form, where
the blocks correspond to isomorphic indecomposable representations. Con-
sequently, we can apply the maps ψQ to each of these blocks to define a
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map

ΨQ : {DA | A ∈ End(W )} (5.5.53)

→ RQr1 ⊕ . . .R
Q
ru ⊕ C

Q
c1 ⊕ . . . C

Q
cv ⊕H

Q
h1
⊕ . . .HQhw =: KQW

ΨQ := ψQR,r1 × . . . ψ
Q
R,ru
× ψQC,c1 × . . . ψ

Q
C,cv
× ψQH,h1

× . . . ψQH,hw .

Note that by construction of DA, the map ΨQ is a linear bijection. Further-
more, as the elements DA, A ∈ End(W ) form a full set of representatives for
the equivalence classes of End(W )/J , we may define ΨQ to be a linear bi-
jection from End(W )/J to KQW . Precomposing with the natural projection
from End(W ) onto End(W )/J , we finally obtain a linear surjective map
from End(W ) onto KQW with kernel equal to J . We will also denote this
latter map by ΨQ. The following theorem summarizes most of our results
so far by listing some properties of this map.

Theorem 5.5.14. The map ΨQ : End(W )→ KQW is a surjective morphism
of real unitary algebras with kernel J . Moreover, a value λ ∈ C is an
eigenvalue of A ∈ End(W ) if and only if it is an eigenvalue of one of the
components of ΨQ(A).

Proof. It follows from the above discussion that ΨQ is a linear surjective map
with kernel J . It is also clear that ΨQ(IdW ) = Id ∈ KQW . To show that ΨQ is
a morphism of algebras, we need to show that ΨQ(A)ψQ(B) = ΨQ(AB) for
all A,B ∈ End(W ). To this end, let us denote by l := u+ v+w the number
of different types of indecomposable representations appearing in the decom-
position (5.5.52) ofW . Let D ∈ End(W ) be a block diagonal endomorphism
with respect to isomorphic indecomposable representations. We denote by
(ψQ)l(D) the element of KQW obtained by applying the map ψQ to each of the
l block components of D. Note that by definition, (ψQ)l(DA) = ΨQ(DA) for
all A ∈ End(W ). We have also seen that ψQ : End

´⊕kiWK
i

¯

→ KQki is a

morphism of algebras, hence we have that (ψQ)l(D)(ψQ)l(D′) = (ψQ)l(DD′)
for all block diagonal endomorphisms D and D′. Given A,B ∈ End(W ) it
now follows that

ΨQ(A)ΨQ(B) = ΨQ(DA)ΨQ(DB)

= (ψQ)l(DA)(ψQ)l(DB) = (ψQ)l(DADB) .
(5.5.54)

From Proposition 5.5.8 it follows that DADB and DAB differ by an element
of J . This difference is furthermore block diagonal, as both DADB and
DAB are. It follows that

(ψQ)l(DADB) = (ψQ)l(DAB) = ΨQ(AB) (5.5.55)
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and we see that indeed ΨQ(A)ψQ(B) = ΨQ(AB).
To show that A and DA share the same eigenvalues, we note that by Propo-
sition 5.5.5 a value λ ∈ C is an eigenvalue of A if and only if it is an
eigenvalue of DA. This is furthermore equivalent to λ being an eigenvalue
of one of the diagonal blocks of DA. By Proposition 5.5.10 and Remark
5.5.12 this is equivalent to λ being an eigenvalue of one of the components
of (ψQ)l(DA) = ΨQ(DA) = ΨQ(A). This proves the claim.

Example 5.5.15. As in Examples 5.5.2 and 5.5.7, we let W be given by

W = WR
1 ⊕WR

1 ⊕WC
1 , (5.5.56)

where WR
1 and WC

1 are indecomposable representations of real and complex
type, respectively. An element A ∈ End(W ) is then given by

A =

¨

˝

a Id +N1,1 b Id +N1,2 A1,3

c Id +N2,1 d Id +N2,2 A2,3

A3,1 A3,2 e Id +fI +N3,3

˛

‚ , (5.5.57)

where DA is the block diagonal matrix

DA =

¨

˝

a Id b Id 0
c Id d Id 0
0 0 e Id +fI

˛

‚ . (5.5.58)

It follows that ΨQ(A) is given by

ΨQ(A) =

ˆ

a b
c d

˙

⊕
ˆ

e f
−f e

˙

∈ RQ2 ⊕C
Q
1 ⊂ Mat(R, 2)⊕Mat(R, 2) . (5.5.59)

4

Remark 5.5.16. Readers familiar with non-commutative algebra might have
recognised in J the Jacobson radical of End(W ). Consequently, End(W )/J
is a semisimple algebra. By Wedderburn’s structure theorem such an algebra
is isomorphic to the direct sum of a number of matrix algebras over a division
algebra. This is precisely the result of Theorem 5.5.14. Moreover, this latter
theorem tells us that Wedderburn’s isomorphism can be done in the case of
End(W )/J while keeping track of the eigenvalues. 4

5.5.3 The Third Reduction
Before explicitly describing those matrices with a vanishing or purely imag-
inary spectrum, we will now make one last reduction. This reduction will
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allow us to work with matrices over the complex numbers, which not only
makes calculations easier, but will also allow us to use results from algebraic
geometry. This latter observation will be crucial in Section 5.7. Unlike in
the last two reductions, the reduced matrix might not have all the eigenval-
ues that the original matrix has (even when ignoring algebraic multiplicity).
However, this discrepancy will happen in a way that is not relevant to the
proof of Theorem 5.4.3.
We define the real and complex algebras

RPn := RQn = Mat(R, n)

CPn := Mat(C, n)

HPn :=

{ˆ
X Y
−Y X

˙

, X, Y ∈ Mat(C, n)

}
⊂ Mat(C, 2n)

. (5.5.60)

We will write KPn to denote one of these algebras when the type is clear. It
can readily be seen that the maps

Cn :

ˆ

A B
−B A

˙

7→ A+Bi

Hn :

¨

˚

˚

˝

A B C D
−B A −D C
−C D A −B
−D −C B A

˛

‹

‹

‚

7→
ˆ

A+Bi C +Di
−C +Di A−Bi

˙ (5.5.61)

Identify CQn with CPn and HQn with HPn as real unitary algebras. We further-
more note that HPn can be described as

HPn = {Z ∈ Mat(C, 2n) such that SZ = ZS} , (5.5.62)

for

S =

ˆ

0 Id
− Id 0

˙

. (5.5.63)

Lastly, it can be seen that

Mat(C, 2n) = HPn ⊕ iHPn ,

as vector spaces over R. See [21] for more on quaternionic matrices and
their real and complex representations. Obviously X ∈ CQn and Cn(X) ∈ CPn
cannot have the same eigenvalues, as they are matrices of different sizes.
This likewise holds for the map Hn. Nevertheless, the following theorem
tells us that matrices with a vanishing or purely imaginary spectrum are
respected by these identifications.
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Proposition 5.5.17. Any eigenvalue of Cn(X) ∈ CPn is an eigenvalue of
X ∈ CQn . Furthermore, If λ ∈ C is an eigenvalue of X then either λ or its
complex conjugate λ is an eigenvalue of Cn(X).
λ ∈ C is an eigenvalue of X ∈ HQn if and only if it is an eigenvalue of
Hn(X) ∈ HPn .

Proof. We define the map

Cn ⊕ Cn : CQn → Mat(C, 2n)

X =

ˆ

A B
−B A

˙

7→
ˆ

Cn(X) 0
0 Cn(X)

˙

=

ˆ

A+Bi 0
0 A−Bi

˙ (5.5.64)

between real sub-algebras of Mat(C, 2n). Because Cn(X) · Cn(Y ) = Cn(X ·
Y ) for all X,Y ∈ CQn , it follows that Cn ⊕ Cn likewise respects matrix
multiplication. Since we also see that tr(X) = 2 tr(A) = tr((Cn ⊕ Cn)(X)),
we conclude from Lemma 5.5.11 that X and (Cn ⊕ Cn)(X) have the same
eigenvalues, counted with algebraic multiplicity. From this it follows that
any eigenvalue of Cn(X) is an eigenvalue of X. Conversely, an eigenvalue of
X is either an eigenvalue of Cn(X) or of Cn(X), in which case its complex
conjugate is an eigenvalue of Cn(X). This proves the first claim of the
theorem.
The second claim follows likewise from applying Lemma 5.5.11 to the map

Hn ⊕Hn : HQn → Mat(C, 4n)
¨

˚

˚

˝

A B C D
−B A −D C
−C D A −B
−D −C B A

˛

‹

‹

‚

7→

¨

˚

˚

˝

A+Bi C +Di 0 0
−C +Di A−Bi 0 0

0 0 A+Bi C +Di
0 0 −C +Di A−Bi

˛

‹

‹

‚

.

(5.5.65)

Note that both argument and image have trace equal to 4 tr(A).

Combining the results in this section, we see that there exists a surjective
morphism of unitary algebras between End(W ) and the direct sum of a num-
ber of spaces of the types RPn , CPn and HPn . As this morphism also respects
the property of having a vanishing or purely imaginary spectrum, the task
of describing those elements in End(W ) with this property is reduced to
finding those in the three families of matrices RPn , CPn and HPn . In partic-
ular, we will be able to prove Theorem 5.4.3 once we prove an analogous
result for the matrix algebras KPn . Note that reducing the problem to one
in KPn means that we may essentially forget about the symmetry monoid Σ.
Indeed, it already follows that the codimension of the set of endomorphisms
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in End(W ) with a vanishing or purely imaginary spectrum depends only on
the decomposition of W into indecomposable representations. Apparently
all other details of the action of the symmetry monoid Σ on the space W do
not play a role.

5.5.4 A Remark on Uniqueness
During the reductions in this section we have made a particular choice of
generators Id, Ii, Ji,Ki ∈ End(Wi) for any indecomposable representation
Wi of quaternionic type, and likewise for those of complex type. It may be
insightful to see what effect a different choice of generators has on the man-
ifolds in Theorem 5.4.2. We claim that there is no effect. More precisely, a
different choice of generators will correspond to a particular isomorphism of
the algebra KPn . As the manifolds in KPn that we will construct in Section
5.8 will be invariant under these isomorphisms, we will conclude that the
manifolds in Theorems 5.4.3 and 5.4.2 will be unaltered by a different choice
of generators as well.

To illustrate, suppose {Id, I, J,K} ⊂ End(WH
i ) and {Id, I ′, J ′,K ′}

⊂ End(WH
i ) both generate the quaternionic structure. Then an element

X ∈ End(WK
i ) can be expressed in either set of generators and a nilpotent

term. For convenience, let us write Id = I0, I = I1, J = I2 and K = I3.
Likewise, we write Id = I ′0, I ′ = I ′1 and so forth. It follows that there are
coefficients Ai,j and A′i,j such that

Ii =

3∑
j=0

Ai,jI
′
j +Ni and I ′i =

3∑
j=0

A′i,jIj +N ′i (5.5.66)

for i ∈ {0, . . . 3}, and where the Ni and N ′i are nilpotent endomorphisms. If
we write

X =

3∑
i=0

aiIi +N =

3∑
j=0

a′jI
′
j +N ′ ∈ End(WK

i ) , (5.5.67)

for N and N ′ nilpotent, then it follows that

a′j =

3∑
i=0

Ai,jai and ai =

3∑
j=0

A′j,ia
′
j . (5.5.68)

Motivated by this, we define a map φ from the quaternions to itself given by

φ(a0 + a1ĩ+ a2j̃ + a3k̃) = a′0 + a′1ĩ+ a′2j̃ + a′3k̃ . (5.5.69)
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From (5.5.68) we see that this map is linear and invertible. If we furthermore
write

Y =

3∑
i=0

biIi +N =

3∑
j=0

b′jI
′
j +N ′ ∈ End(WK

i ) , (5.5.70)

and

XY =
3∑
i=0

ciIi +N =

3∑
j=0

c′jI
′
j +N ′ ∈ End(WK

i ) , (5.5.71)

Then we see that the ci are formed from the ai and bi following the rules of
regular multiplication in the quaternions. The same holds for the c′j , a′j and
b′j . In other words, we have

(a0 + a1ĩ+ a2j̃ + a3k̃)(b0 + b1ĩ+ b2j̃ + b3k̃) = c0 + c1ĩ+ c2j̃ + c3k̃ ,

(a′0 + a′1ĩ+ a′2j̃ + a′3k̃)(b′0 + b′1ĩ+ b′2j̃ + b′3k̃) = c′0 + c′1ĩ+ c′2j̃ + c′3k̃ .
(5.5.72)

However, what this tells us is exactly that φ(xy) = φ(x)φ(y) for all x, y ∈ H.
As it furthermore holds that φ(1) = 1, we conclude that a different choice of
generators for the quaternionic structure leads to a (unitary) automorphism
of the quaternions applied to the entries of HPn . The same holds analogously
for the complex case. For the real case there is no choice left, as we always
take Id as the operator whose class in End(WR

i )/Nil(WR
i ) generates the real

structure.

It can easily be verified that the only unitary isomorphisms of C are the
identity and complex conjugation. This latter operation yields component-
wise complex conjugation to the entries of CPn = Mat(C, n). However, it will
follow from Remark 5.8.9 in Section 5.8 that this gives the same manifolds.
It follows from the Skolem-Noether theorem (see Proposition 2.4.7. of [21])
that every automorphisms φ of H is an inner automorphism. In other words,
there exists an α = α(φ) ∈ H such that φ(x) = αxα−1 for all x ∈ H. This
means that a different choice of generators for the quaternionic structure of
End(WH

i )/Nil(WH
i ) will yield a transformation in HPn that is just given by

conjugation by an element in HPn . As the manifolds in Theorems 5.8.13 and
5.8.14 will be conjugacy invariant, such a transformation will not effect these
manifolds. 4
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5.6 Proof of Main Results

Here we prove Theorem 5.4.3, assuming a technical result on general matrix
algebras that will be proven in the next sections. We also present the theorem
in the introduction as a consequence of Theorem 5.4.3.

5.6.1 Proof of Theorem 5.4.3
We will now prove Theorem 5.4.3 under the assumption of Theorem 5.6.1
below. Theorem 5.6.1 itself will then be proven in the following sections
as Theorems 5.8.3, 5.8.10, 5.8.13, 5.8.4, 5.8.11 and 5.8.14. Recall that in
Section 5.4 we have already proven Theorem 5.4.2, assuming the result of
Theorem 5.4.3.

Theorem 5.6.1. The set of all nilpotent elements in RPn , CPn and HPn is
the disjoint union of a finite number of conjugacy invariant, embedded sub-
manifolds of real codimension greater or equal to n, 2n and 4n, respectively.
In all three cases, there is unique manifold of this exact codimension.

The set of all elements in RPn , CPn and HPn with a purely imaginary spec-
trum is the disjoint union of a finite number of conjugacy invariant, em-
bedded submanifolds of real codimension greater or equal to dn/2e, n and n,
respectively. Again, there is in all three cases exactly one submanifold of this
precise codimension.

Note that the monoid Σ does not occur in Theorem 5.6.1 anymore.

Corollary 5.6.2. Let W be the representation

W =

r1⊕
WR

1 . . .

ru⊕
WR
u

c1⊕
WC

1 . . .

cv⊕
WC
v

h1⊕
WH

1 . . .

hw⊕
WH
w , (5.6.1)

where theWK
i , K ∈ {R,C,H}, are mutually non-isomorphic indecomposable

representations. We write

KPW := RPr1 ⊕ . . .R
P
ru ⊕ C

P
c1 ⊕ . . . C

P
cv ⊕H

P
h1
⊕ . . .HPhw (5.6.2)

for the corresponding representation of the endomorphism algebra ofW . The
set of nilpotent elements in KPW consists of a finite number of disjoint, con-
jugacy invariant manifolds of real codimension

KW = r1 + · · ·+ ru + 2c1 + · · ·+ 2cv + 4h1 + · · ·+ 4hw

or higher. Exactly one of these manifolds has codimension precisely equal to
this number.
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Likewise, the set of elements in KPW with a purely imaginary spectrum con-
sists of a finite number of disjoint, conjugacy invariant manifolds of real
codimension

CW = dr1/2e+ · · ·+ dru/2e+ c1 + · · ·+ cv + h1 + · · ·+ hw

and higher, with this exact number appearing only once. Here, the spectrum
of an element of KPW is to be understood as the union of the spectra of the
individual components, conform an interpretation as block matrices. Conju-
gacy invariance is with respect to invertible elements in the algebra KPW .

Proof. We define submanifolds in KPW by taking all possible product sets
of the submanifolds in RPn , CPn and HPn . It follows directly from Theorem
5.6.1 that these submanifolds satisfy all the conditions of the statement.
Note that if we have a finite number of manifoldsM1, . . .Mk with embedded
submanifolds Ni ⊂Mi of codimension ni, then N1 × . . . Nk is an embedded
submanifold of M1 × . . .Mk of codimension n1 + . . . nk.

Proof of Theorem 5.4.3. As we may write

W ∼=
r1⊕

WR
1 . . .

ru⊕
WR
u

c1⊕
WC

1 . . .

cv⊕
WC
v

h1⊕
WH

1 . . .

hw⊕
WH
w , (5.6.3)

there exists an isomorphism between the right hand side and the left hand
side of equation (5.6.3). We fix such an isomorphism, so that we may assume
without loss of generality that W equals the direct sum on the right of equa-
tion (5.6.3). Note that a different choice of identification (i.e. isomorphism)
will not yield other submanifolds, as we will prove that these manifolds are
conjugacy invariant. We furthermore write

KQW = RQr1 ⊕ . . .R
Q
ru ⊕ C

Q
c1 ⊕ . . . C

Q
cv ⊕H

Q
h1
⊕ . . .HQhw (5.6.4)

and

KPW = RPr1 ⊕ . . .R
P
ru ⊕ C

P
c1 ⊕ . . . C

P
cv ⊕H

P
h1
⊕ . . .HPhw (5.6.5)

for the algebras corresponding to the real and complex representations of the
endomorphism algebras. From Theorem 5.5.14 we know that there exists a
surjective, linear map ΨQ : End(W )→ KQW . Moreover, by the identification
between KPW and KQW we get a surjective, linear map ΨP : End(W )→ KPW .
From Corollary 5.6.2 we see that the set of nilpotent elements in KPW consists
of a finite number of disjoint, conjugacy invariant manifolds of codimension
KW and higher, with this exact number appearing only once. Likewise, we
see that the set of elements in KPW with a purely imaginary spectrum consists
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of a finite number of disjoint, conjugacy invariant manifolds of codimension
CW and higher. Again, this exact number appears only once. From Theorem
5.5.14 and Proposition 5.5.17 we see that the map ΨP preserves the property
of having a vanishing or purely imaginary spectrum. Therefore, the disjoint
manifolds in End(W ) with a vanishing or purely imaginary spectrum will be
just the inverse images under ΨP of the manifolds in KPW . Because ΨP is a
surjective linear map, the inverse images are indeed embedded submanifolds
of the same codimension as their original.
It remains to show that the manifolds in End(W ) are conjugacy invari-
ant. However, as ΨQ and hence ΨP are morphisms of unitary algebras, it
holds that ΨP (C−1) = ΨP (C)−1 for any invertible element C ∈ End(W ).
Therefore, if M is a conjugacy invariant subset of KPW and we have A ∈
(ΨP )−1(M), then ΨP (CAC−1) = ΨP (C)ΨP (A)(ΨP (C))−1 for any invert-
ible C ∈ End(W ). From this it follows that CAC−1 is an element of
(ΨP )−1(M) as well. This finishes the proof.

5.6.2 Transversality
We will now show how the technical result of Theorem 5.4.2 implies the
more intuitive result in the introduction. To this end, we need the following
definition:

Definition 5.6.3. Let M and N be manifolds and let A ⊂ N be a subman-
ifold of N . A C1 map f : M → N is called transverse to A (notation f&A)
if for all x ∈M with f(x) ∈ A it holds that Im(Txf) + Tf(x)A = Tf(x)N .

Remark 5.6.4. Note that whenever dimM + dimA < dimN , the condition
Im(Txf) + Tf(x)A = Tf(x)N cannot be satisfied. Hence, in this case the
set of all f transverse to A is exactly the set of all C1 maps f such that
f(M)∩A = ∅. In other words, transverse to A then means avoiding the set
A. 4
Next, we introduce different topologies on the set of smooth maps from M
to N . We will see that the set of maps from M to N transverse to a given
finite set of submanifolds is dense in these topologies.

Definition 5.6.5. Let s be a natural number and let M and N be two
Cs manifolds (in particular, M and N might be C∞ manifolds). Denote
by Cs(M,N) the set of all Cs maps from M to N . We will give two ways
of defining a topology on Cs(M,N). To this end, let (U ⊂ M,φ) and
(V ⊂ N,ψ) be charts on M and N , and let K ⊂ U ⊂ M be a compact
subset of M . Let furthermore ε > 0 be given and let f ∈ Cs(M,N) be a
map satisfying f(K) ⊂ V . We denote by

N s(f, (U, φ), (V, ψ),K, ε)
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the set of all g ∈ Cs(M,N) such that g(K) ⊂ V and

||Dk
x(ψfφ−1)−Dk

x(ψgφ−1)||< ε

for all x ∈ K and k ∈ {0, . . . s}. The weak or compact-open topology on
Cs(M,N) is the smallest topology containing all sets of this form. We de-
note Cs(M,N) with this topology by CsW (M,N). In particular, a base for
CsW (M,N) is given by all sets of the form⋃

i∈I
N s(fi, (Ui, φi), (Vi, ψi),Ki, εi) , (5.6.6)

where I is some finite index set.

We can enlarge this topology by allowing not just finite index sets I in
equation (5.6.6), but also sets I such that the family of sets (Ui)i∈I is locally
finite. That is, any point in M has a neighbourhood intersecting Ui for
only finitely many i ∈ I. The topology on Cs(M,N) with base the sets in
(5.6.6) with (Ui)i∈I locally finite is called the strong or Whitney topology.
We denote Cs(M,N) with this topology by CsS(M,N). C∞W (M,N) and
C∞S (M,N) are then defined as the union of the topologies on C∞(M,N)
induced by the inclusions in CsW (M,N) and CsS(M,N) respectively, for all
finite s. See [12] for more on these topologies.

Remark 5.6.6. In [12], a base for the strong topology is given only by sets of
the form (5.6.6) with fi = fj for all i, j ∈ I (and with (Ui)i∈I locally finite).
However, for

g ∈
⋃
i∈I
N s(fi, (Ui, φi), (Vi, ψi),Ki, εi) , (5.6.7)

with

max
k≤s

sup
x∈Ki
||Dk

x(ψifiφ
−1
i )−Dk

x(ψigφ
−1
i )||:= µi < εi , (5.6.8)

it is readily seen by the triangle inequality that

g ∈
⋃
i∈I
N s(g, (Ui, φi), (Vi, ψi),Ki, εi − µi) (5.6.9)

⊂
⋃
i∈I
N s(fi, (Ui, φi), (Vi, ψi),Ki, εi) . (5.6.10)

Therefore, the strong topology can also be defined by a base consisting of
sets of the form (5.6.6) with fi = fj for all i, j ∈ I. Note that if M is
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compact, any locally finite family of open sets (Ui)i∈I is finite (M can then
be covered by finitely many sets, each intersecting only finitely many Ui).
Therefore, the weak and strong topologies coincide when M is compact. 4
Harder to prove is that CsW (M,N) and CsS(M,N) are Baire spaces for 0 ≤
s ≤ ∞. That is, the intersection of countably many dense open sets is again
dense. See [12]. We call a set residual if it contains the intersection of
countably many dense open sets. In particular, residual sets are therefore
dense in CsW (M,N) and CsS(M,N).
The following proposition follows from Theorems 2.1 and 2.5 in Chapter 3
of [12]. This result will be used to argue that a subrepresentation U is not
expected to occur as a kernel or center subspace in a k-parameter bifurcation
if k is less than KU or CU , respectively.

Proposition 5.6.7. Let M and N be manifolds and let N1 till Nr be sub-
manifolds of N . Let s be a (non-zero) natural number or infinity. The set
of Cs-maps from M to N that are transverse to all manifolds Ni is residual
(and therefore dense) in both CsW (M,N) and CsS(M,N).

In contrast to Proposition 5.6.7, the next result will be used to argue that
a subrepresentation U is expected to occur as a kernel or center subspace
in a k-parameter bifurcation if k equals or exceeds KU or CU , respectively.
Proposition 5.6.8 is a well-known consequence of transversality, but an ex-
plicit proof can be hard to find in the literature. The method of proof that
we will use is adapted from [10].

Proposition 5.6.8. Let A be an m-dimensional submanifold of the
n-dimensional manifold N and let U ⊂ Rk be a non-empty open subset.
Assume furthermore that k + m ≥ n. Then there exists a non-empty open
subset of maps f ∈ C∞(U,N) (in both the strong and weak topologies) such
that f(U) ∩A 6= ∅.

Proof. By choosing a submanifold chart, we may assume that A equals Rm×
0 := {(x1, . . . xm, 0, . . . 0)} ⊂ Rn. Identifying Rk with 0× Rk :=
{(0, . . . 0, xn−k+1, . . . xn)} ⊂ Rn, we may then simply set f equal to the
identity to obtain a map whose image intersects A (by shifting U we may
always assume that U contains 0). Because U is open and because k ≥ n−m,
U contains a closed (n −m)-dimensional disk centered around 0, Dµ(0) ⊂
0 × Rn−m ⊂ 0 × Rk, for some µ > 0. Let P denote the projection from Rn
to 0× Rn−m. Then P ◦ f restricts to the identity on Dµ(0). We claim that
whenever g is a smooth map from U to Rn satisfying ||g(x)− f(x)||< 1

2µ for
all x ∈ Dµ(0), then the image of g intersects Rm× 0. To this end, it suffices
to show that the image of P ◦ g|Dµ(0) contains 0.
Suppose the converse, so that g : U → Rn satisfies ||g(x) − f(x)||< 1

2µ for
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all x ∈ Dµ(0) and so that g̃ := P ◦ f |Dµ(0): Dµ(0) → Dµ(0) does not reach
0. We will use the concept of the degree of a smooth map to arrive at a
contradiction. Let f be a smooth map between a compact manifold X and a
connected manifold Y . If X and Y have the same dimension, then the mod 2
degree of f , notation deg2(f), equals the number of points in f−1(y) modulo
2 for any regular value y ∈ Y . It is shown in [10] (Chapter 2, Paragraph 4)
that this is a well-defined concept. This reference also contains the following
statements that we will be using:

1. The mod 2 degree of a map is homotopy invariant.

2. If X is the boundary of a manifold W , and f can be extended to all of
W , then deg2(f) = 0.

We also note that if X = Y , the degree of the identity map equals 1, as
every point has only itself as a preimage.
Let Sµ(0) denote the boundary of Dµ(0). As g̃ does not reach 0, we may
define the map

h : x 7→ µ
g̃(x)

||g̃(x)||
(5.6.11)

from Sµ(0) to itself. As h may be extended to a map from Dµ(0) to Sµ(0)
(also given by equation (5.6.15)) we conclude from the second statement that
deg2(h) = 0. We will now show that h : Sµ(0)→ Sµ(0) is homotopic to the
identity, thereby arriving at a contradiction using the first statement. To
this end, note that for all x ∈ Dµ(0) we have

||g̃(x)− x|| = ||(P ◦ g)(x)− (P ◦ f)(x)||≤ ||P ||·||g(x)− f(x)||

< ||P ||·1
2
µ ≤ 1

2
µ . (5.6.12)

It follows that for all x ∈ Sµ(0) we have

||h(x)− x|| =
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ
g̃(x)

||g̃(x)||
− x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

µ

||g̃(x)||
− 1

˙

g̃(x) + g̃(x)− x
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

≤
ˇ

ˇ

ˇ

ˇ

µ

||g̃(x)||
− 1

ˇ

ˇ

ˇ

ˇ

· ||g̃(x)||+||g̃(x)− x||

= |µ− ||g̃(x)|| |+||g̃(x)− x||
= | ||x||−||g̃(x)|| |+||g̃(x)− x||

≤ ||g̃(x)− x||+||g̃(x)− x||< 2 · 1

2
µ = µ . (5.6.13)
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From this we see that for all t ∈ [0, 1] and x ∈ Sµ(0) it holds that

||th(x) + (1− t)x|| = ||x− t(x− h(x))||≥ ||x||−||t(x− h(x))||
= µ− |t|·||x− h(x)||≥ µ− ||x− h(x)||
> µ− µ = 0 . (5.6.14)

Hence, ||th(x)+(1− t)x|| never vanishes and we get a well-defined homotopy
between h and the identity given by

(x, t) 7→ µ
th(x) + (1− t)x
||th(x) + (1− t)x||

(5.6.15)

for (x, t) ∈ Sµ(0) × [0, 1]. We conclude that 1 = deg2(h) = 0. This is of
course a contradiction, and the proposition follows.

Remark 5.6.9. We may interpret Theorem 5.4.2 and Propositions 5.6.7 and
5.6.8 as results on generic bifurcations in equivariant systems. To see why,
let Σ be a monoid acting on a finite dimensional representation space V
by linear maps Aσ, σ ∈ Σ. Let F (x, λ) be a family of equivariant vector
fields on V , indexed by a parameter λ in some open set Ω ⊂ Rk. Suppose
furthermore that F (x(λ), λ) = 0 for some smooth curve of values x(λ). If
the zeroes x(λ) are all invariant, that is if AσX(λ) = x(λ) for all σ ∈
Σ and λ ∈ Ω, then linearization gives a map f from Ω to End(V ) given
by f(λ) = Dx(x(λ), λ). For a bifurcation to appear along x(λ), one of
the endomorphisms Dx(x(λ), λ) has to have a non-trivial kernel or center
subspace. Hence, we are interested in maps from the manifold Ω into the
manifold End(V ) that have a non-trivial kernel or center subspace. Note
that f can be perturbed into any other map from Ω to End(V ), by adding
the equivariant map B(λ)(x− x(λ)) to F (x(λ), λ) for any map B from Ω to
End(V ).
As a result, if U is any (complementable) invariant subspace of V with
k < KU , then it follows from Proposition 5.6.7 that U will not ’robustly’
occur as the generalized kernel of any of the linear maps f(λ) = Dx(x(λ), λ).
More precisely, if U does appear as the generalized kernel of any of the maps
f(λ), then after an arbitrarily small perturbation of f(λ) it may not anymore.
Likewise, one does not expect U to appear as the center subspace of any of
the maps f(λ) if k < CU .
If, however, it holds that k ≥ KU , then by Proposition 5.6.8 there is an open
set of maps f : Ω→ End(V ) for which U appears as the generalized kernel of
one of the maps f(λ). Similarly for U as the center subspace if k ≥ CU . We
summarize these results by saying that a generic k-parameter steady state
bifurcation occurs along those U for which KU ≤ k and that generically a
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center manifold is a graph over those U for which CU ≤ k. In particular,
a generic 1-parameter steady state bifurcation appears along exactly one
indecomposable representation of real type, as this is the only way it can
hold that KU = 1. Likewise, a generic 1-parameter Hopf bifurcation appears
along two isomorphic indecomposable representations of real type or along
one indecomposable representation of either complex or quaternionic type.
Note that CU = 1 only when U is indecomposable of any type or when
U is the direct sum of two isomorphic indecomposable representations of
real type. Moreover, if U is indecomposable of real type then elements
of End(U) have only one, real eigenvalue (of algebraic multiplicity dim(U)).
This excludes the standard Hopf bifurcation scenario whereby two (separate)
conjugate eigenvalues pass through the imaginary axis. 4

5.7 Intermezzo; Some Algebraic Geometry

In this section and the next we will prove Theorem 5.6.1 by identifying those
elements in RPn , CPn and HPn with a vanishing or purely imaginary spectrum.
Our first step is proving the technical result of Theorem 5.7.1 below. It
should be noted that the results in this section are known to experts, but
hard to find in the literature.

Theorem 5.7.1. Conjugacy classes in Mat(C, n) are embedded manifolds.
That is, given X ∈ Mat(C, n), the set {A−1XA | A ∈ Gl(C, n)} is an
embedded submanifold of Mat(C, n).

In order to prove Theorem 5.7.1, we will use a theorem from [23]. To this
end, we will have to introduce some basic algebraic geometry. We begin by
defining an alternative topology on Cn.

Definition 5.7.2. The Zariski topology on Cn is defined by stating that its
closed sets are given by the common zeroes of a set of polynomials. More
precisely, let C[X1, . . . , Xn] denote the set of polynomials in n-variables and
coefficients in C. A subset Z ⊂ Cn is closed in the Zariski topology (or
simply Zariski-closed) when it can be written as

Z = Z(S) = {x ∈ Cn | p(x) = 0∀ p ∈ S} (5.7.1)

for some set of polynomials S ⊂ C[X1, . . . , Xn].

Note that Zariski-closed (or Zariski-open) sets are also closed (or open) in
the usual, Euclidean topology on Cn. The following well-known result states
that Zariski-closed sets can be described as cut out by only finitely many
polynomials. The proof can be found in for example [3], Paragraph 9.6.
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Theorem 5.7.3 (Hilbert’s basis theorem). Every ideal in C[X1, . . . , Xn] is
generated by finitely many elements. Consequently, for any Zariski-closed
set Z there exist finitely many polynomials p1, . . . pk such that

Z = Z({p1, . . . , pk}) = {x ∈ Cn | p1(x) = · · · = pk(x) = 0} . (5.7.2)

We will shortly comment on how the second part of Theorem 5.7.3 follows
from the first. One easily verifies that it does not matter whether a Zariski-
closed set is defined by the vanishing of a set of polynomials S, or by the
vanishing of the ideal generated by this set, 〈S〉. In other words, we have
Z(S) = Z(〈S〉). As the ideal 〈S〉 is also generated by finitely many elements
p1, . . . pk, we find Z(S) = Z(〈p1, . . . , pk〉) = Z({p1, . . . , pk}).
We continue to introduce some terminology from [23]. An example of an
affine algebraic variety over C is a Zariski-closed set Z ⊂ Cn together with
the algebra of functions C[X1, . . . , Xn]|Z . More generally, we have the fol-
lowing definition.

Definition 5.7.4. An (abstract) affine algebraic variety is a set V with an
algebra A of functions from V to C, such that the following property holds.
There exists a bijection ι from V to a Zariski-closed set Z ⊂ Cn for which
ι∗ : C[X1, . . . , Xn]|Z→ A, f 7→ f ◦ ι is an isomorphism of algebras.

The Zariski topology can more generally be defined on any affine algebraic
variety (V,A), by stating that a subset of V is closed when it is given by
the vanishing of some elements of A. Moreover, given two affine varieties
(V,A) and (W,B), one can define the product variety (V ×W,A⊗B). This
is readily seen to be an affine algebraic variety in its own right. Here, A⊗B
is interpreted as an algebra of functions from V ×W to C by setting (a ⊗
b)(v, w) := a(v) · b(w) for a⊗ b ∈ A⊗ B and (v, w) ∈ V ×W . To complete
the description of the category of affine algebraic varieties, we have:

Definition 5.7.5. A morphism between affine varieties (V,A) and (W,B)
is a map f from V to W such that f∗b := b ◦ f is an element of A for all
b ∈ B.

Finally, we need the notions of an affine algebraic group and the action of
an affine algebraic group on an affine algebraic variety. These will be the
appropriate generalizations of the action of Gl(C, n) on Mat(C, n).

Definition 5.7.6.

1. An affine algebraic group is an affine algebraic variety (G,A) that is
also a group for which the operations of multiplication
m(•, •) : (G×G,A⊗A)→ (G,A) and taking inverses •−1 : (G,A)→
(G,A) are morphisms of affine algebraic varieties.
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2. An algebraic action of an affine algebraic group (G,A) on an affine
algebraic variety (V,B) is defined as an action of the group G on the set
V such that the defining map ξ : (G×V,A⊗B)→ (V,B), ξ(g, v) = g ·v
is a morphism of affine algebraic varieties.

Example 5.7.7. It can be shown that

(Gl(C, n),C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n))

with the usual matrix multiplication is an affine algebraic group. Here,

C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n)

is the algebra of functions on Gl(C, n) generated by the matrix coefficients
Xi,j for 1 ≤ i, j ≤ n and 1 over the determinant, Det−1(X) := 1/Det(X) for
X ∈ Gl(C, n). See [23].

As an example of an algebraic action, we have:

Lemma 5.7.8. We give Mat(C, n) the structure of an affine algebraic variety
by identifying it with the (Zariski-closed) set Cn×n, together with the natural
algebra of polynomials in n2 variables. The conjugacy action of Gl(C, n)
(with the affine algebraic structure defined in Example 5.7.7) on the affine
algebraic variety Mat(C, n) is an example of an algebraic action.

Proof. It is clear that conjugation defines an action of Gl(C, n) on Mat(C, n).
Therefore, it remains to show that the defining map of this action,

ξ : Gl(C, n)×Mat(C, n)→ Mat(C, n) (5.7.3)

(C,X) 7→ C−1XC

is a morphism of affine algebraic varieties. In other words, given a polynomial
p ∈ C[. . . , Xi,j , . . . ], we need to show that the map (C,X) 7→ p(C−1XC) is
an element of

C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n)⊗C[. . . , Xi,j , . . . ] .

It suffices to verify this for the generators Xi,j , as pre-composition by ξ is
linear and multiplicative on function space. Therefore, the statement of the
lemma is true whenever the map (C,X) 7→ (C−1XC)i,j is an element of

C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n)⊗C[. . . , Xi,j , . . . ]

for all i, j. Writing it out, we get

(C−1XC)i,j =
∑
k,l

(C−1)i,kXk,lCl,j =
∑
k,l

(C−1)i,kCl,jXk,l . (5.7.4)

179



CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

Now, X 7→ Xk,l is clearly an element of C[. . . , Xi,j , . . . ]. Likewise, C 7→ Cl,j
is an element of

C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n) .

Furthermore, as taking the inverse is a morphism from the affine algebraic
group

(Gl(C, n),C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n))

to itself, and as the map C 7→ Ci,k is an element of

C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n) ,

so is the map C 7→ (C−1)i,k. (This fact can also be directly verified using
Cramer’s rule for inverses.) From this we conclude that the map (C,X) 7→
(C−1XC)i,j is indeed an element of the algebra

C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n)⊗C[. . . , Xi,j , . . . ] .

This proves the lemma.

The following theorem is key in proving Theorem 5.7.1. Its proof can be
found in [23].

Theorem 5.7.9. Let (G,A) be a connected (in the Zariski topology), affine
algebraic group acting algebraically on an affine algebraic variety (V,B).
Then every orbit is Zariski-open in its Zariski-closure.

Next, we need the concept of a non-singular point in an algebraic variety.
Heuristically, this means that around this point, the variety looks like a
submanifold of Cn. The following definition is adapted from [11].

Definition 5.7.10. A Zariski-closed subset Z ⊂ Cn is called irreducible if
it cannot be written as the union of two Zariski-closed, strict subsets of Z.
Such a set can be given the notion of a (finite) dimension. This can be
done algebraically by looking at an ideal in C[X1, . . . , Xn] defining Z, or
geometrically by looking at chains of irreducible varieties that are contained
in Z. See [11] for more on these concepts. Let x be a point in the Zariski-
closed, irreducible subset Z = Z({p1, . . . ps}) ⊂ Cn of dimension r. Writing
P := (p1, . . . ps) : Cn → Cs, we say that x is non-singular if the rank of the
Jacobian DP (x) equals n − r. x is called singular if it is not non-singular.
It can be shown that the definition of a non-singular point is independent of
the set of functions {p1, . . . ps} used to define Z.
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The following lemma shows that ’most points’ are non-singular. This lemma
is Theorem 5.3 in Chapter 1 of [11], adapted to our setting.

Lemma 5.7.11. Let Z be a Zariski-closed, irreducible subset of Cn. The
set of singular points of Z is a Zariski-closed, strict subset of Z.

The following lemma reinforces our remark that non-singular points should
be thought of as those points where the variety looks like a differentiable
manifold. Its proof can be found in [17].

Lemma 5.7.12. Let Z = Z({p1, . . . ps}) be a Zariski-closed, irreducible
subset of Cn of dimension r, and let x be a non-singular point of Z. Suppose
that, without loss of generality, the derivatives of p1 till pn−r are linearly
independent at x. In other words, defining Q := (p1, . . . pn−r), the Jacobian
DQ(x) has full rank. Then there exists a Zariski-open set U ⊂ Cn containing
x such that Z ∩ U = Z({p1, . . . pn−r}) ∩ U . In other words, Z can locally be
seen as cut out by just the polynomials p1 till pn−r.

It should be noted that [11] uses a slightly different definition of affine alge-
braic variety, calling a Zariski-closed subset of Cn an affine algebraic variety
only when it is irreducible. Dropping the irreducibility condition, [11] speaks
of an algebraic set. This will not be problem though, as we will show using
the lemma below that the Zariski-closure of a conjugacy orbit is in fact irre-
ducible. Note that the notion of irreducibility can be defined on any affine
algebraic variety using its Zariski topology. The following lemma can be
deduced from Remark 3 in Chapter 1 of [23].

Lemma 5.7.13. An affine algebraic group is irreducible if and only if it is
connected in the Zariski topology.

We are now in a position to prove Theorem 5.7.1.

Proof of Theorem 5.7.1. We have shown in Lemma 5.7.8 that conjugation
is an algebraic action of the affine algebraic group Gl(C, n) on the affine
algebraic variety Mat(C, n). From the fact that the functions in

C[. . . , Xi,j , . . . ,Det−1]|Gl(C,n)

are continuous in the Euclidean topologies on Gl(C, n) and C, we conclude
that Zariski-closed and Zariski-open sets in Gl(C, n) are closed and open
respectively in the Euclidean topology on Gl(C, n) as well. As a result, we
may conclude that Gl(C, n) is connected in the Zariski topology from the
fact that it is connected in the Euclidean topology. See also Remark 4 in
Chapter 1 of [23]. It therefore follows from Theorem 5.7.9 that the conjugacy
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orbit of any fixed element in Mat(C, n) is Zariski-open in its Zariski-closure.
Let us denote this single orbit by OX ⊂ Mat(C, n), for X ∈ Mat(C, n),
and its Zariski-closure by OX ⊂ Mat(C, n). By Lemma 5.7.13, the alge-
braic group Gl(C, n) is an irreducible variety. Fixing X, we get a map
ξX := ξ(•, X) : Gl(C, n) → Mat(C, n) whose image is OX . From the defi-
nition of a product variety, one sees that ξX is a morphism of varieties as
well. Furthermore, from the definitions of a morphism and of the Zariski-
topology, one easily verifies that a morphism of varieties is continuous in the
Zariski-topology.
Now suppose we have OX = A ∪ B for two Zariski-closed sets A,B ⊂
Mat(C, n). It follows that Gl(C, n) = ξ−1

X (A) ∪ ξ−1
X (B), with ξ−1

X (A) and
ξ−1
X (B) Zariski-closed. As Gl(C, n) is irreducible, it follows that (without loss
of generality) Gl(C, n) = ξ−1

X (A). We conclude that OX = ξX(Gl(C, n)) ⊂
A, and therefore OX ⊂ A. This proves that OX is an irreducible set as well.
By Lemma 5.7.11 we conclude that the set of singular points ofOX is Zariski-
closed. As it is also a strict subset of OX , we conclude that OX cannot be
completely contained in this set of singular points (otherwise the closure of
OX would be smaller). We conclude that there exists a point Y ∈ OX that is
a non-singular point of the irreducible variety OX . Now, from Lemma 5.7.12
we see that there exist a (Zariski)-open set U ⊂ Mat(C, n) containing Y and
polynomials p1 till pn−r such that OX ∩ U = Z({p1, . . . pn−r}) ∩ U . Let V
furthermore be a (Zariski)-open subset of Mat(C, n) such that OX∩V = OX .
Note that the Zariski-topology on a Zariski-closed subset W ⊂ Cm coincides
with the topology induced by the Zariski-topology on Cm, as the algebra of
functions on W is obtained from that on Cm by restriction. It follows that

OX∩U = OX∩V ∩U = Z({p1, . . . pn−r})∩U∩V = P−1(0)∩U∩V , (5.7.5)

for P := (p1, . . . pn−r). As DP (Y ) has maximal rank, we conclude from the
constant rank theorem that OX is locally around Y an embedded subman-
ifold. In particular, if U ′ is an open set containing Y such that OX ∩ U ′
is a submanifold, then for any C ∈ Gl(C, n), COXC−1 ∩ CU ′C−1 = OX ∩
CU ′C−1 is a submanifold, with CU ′C−1 containing CY C−1. We conclude
that OX is globally a submanifold of Mat(C, n). This proves the theo-
rem.

5.8 Geometry; Counting Dimensions

Next, we will determine the dimensions of the set of those elements in RPn ,
CPn and HPn with a vanishing and purely imaginary spectrum. In order to do
so, we will need the results of Lemma 5.8.2 below. These are well known, but
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included for completeness. Furthermore, we will amply use the techniques
behind these results, as well as their generalizations later on.

Definition 5.8.1. For n ∈ N and λ ∈ C we introduce the Jordan block
matrices Bn(λ) ∈ Mat(C, n) given by

Bn(λ) :=

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

λ 1 0 . . . 0 0
0 λ 1 0 . . . 0

. . . . . .

. . . . . .
0 . . . 0 0 λ 1
0 0 . . . 0 0 λ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (5.8.1)

More generally, let p = (s1, . . . sk) with s1 ≥ . . . ≥ sk ≥ 1 and s1+· · ·+sk = n
be a partition of n, We define the block-diagonal matrix Bn,p(λ) ∈ Mat(C, n)
by

Bn,p(λ) :=

¨

˚

˚

˚

˝

Bs1(λ) 0 . . . 0
0 Bs2(λ) . . . 0

. . .
0 . . . 0 Bsk(λ)

˛

‹

‹

‹

‚

. (5.8.2)

Lemma 5.8.2. For fixed n ∈ N and partition p, the vector spaces

Im(LBn,p(λ),Bn,p(λ)) = Im([Bn,p(λ), •])

and

ker(LBn,p(λ),Bn,p(λ)) = ker([Bn,p(λ), •])

are independent of λ ∈ C. Here, [Bn,p(λ), •] denotes the commutator opera-
tor with Bn,p(λ).
For the trivial partition p = (n) (that is, when Bn,p(λ) = Bn(λ)), the com-
plex dimension of the image is equal to n2 − n. For all other partitions this
dimension is strictly smaller than n2 − n.

Proof. From the definition of Bn,p(λ) we see that Bn,p(λ) = Bn,p(0) + λ Id.
Consequently, for all X ∈ Mat(C, n) it holds that

[Bn,p(λ), X] = [Bn,p(0), X] + [λ Id, X] = [Bn,p(0), X] , (5.8.3)

as every matrix commutes with λ Id. We therefore conclude that [Bn,p(λ), •]
= [Bn,p(0), •] as operators. In particular, it holds that their images agree
and that their kernels agree.
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To determine the dimension of Im(LBn(0),Bn(0)), let {ei}ni=1 be the standard
basis of Cn. By the definition of Bn(0) it holds that Bn(0)e1 = 0 and
Bn(0)ei = ei−1 for 2 ≤ i ≤ n. Likewise, we see that Bn(0)T en = 0 and
Bn(0)T ei = ei+1 for 1 ≤ i ≤ n − 1. We will set fi := en+1−i, so that
Bn(0)T f1 = 0 and Bn(0)T fi = fi−1 for 2 ≤ i ≤ n. As in the proof of Lemma
5.4.4, the set {eifTj }i,j forms a basis of Mat(C, n), and we have

LBn(0),Bn(0)(eif
T
j ) = eif

T
j−1 − ei−1f

T
j LBn(0),Bn(0)(e1f

T
j ) = e1f

T
j−1

(5.8.4)

LBn(0),Bn(0)(eif
T
1 ) = −ei−1f

T
1 LBn(0),Bn(0)(e1f

T
1 ) = 0 ,

for 2 ≤ i, j ≤ n. Next, we define the spaces

Vm := span{eifTj | i+ j = m} .

From the equations (5.8.4) it follows that LBn(0),Bn(0) restricts to a map
from Vm to Vm−1 for every m. We claim that for m > n + 1, the map
LBn(0),Bn(0)|Vm has vanishing kernel, whereas for m ≤ n+ 1 the map
LBn(0),Bn(0)|Vm has a one-dimensional kernel. Indeed, setting [i, j] := eif

T
j

we find for m > n+ 1:

LBn(0),Bn(0)

˜

n∑
i=m−n

ai[i,m− i]

¸

(5.8.5)

=

n∑
i=m−n

ai[i,m− i− 1]−
n∑

i=m−n
ai[i− 1,m− i]

=

n∑
i=m−n

ai[i,m− i− 1]−
n−1∑

j=m−n−1

aj+1[j,m− j − 1]

= −am−n[m− n− 1, n] +
n−1∑

i=m−n
(ai − ai+1)[i,m− i− 1]

+ an[n,m− n− 1] .

One readily verifies that this map has vanishing kernel. For m ≤ n + 1 we
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find

LBn(0),Bn(0)

˜

m−1∑
i=1

ai[i,m− i]

¸

(5.8.6)

=

m−2∑
i=1

ai[i,m− i− 1]−
m−1∑
i=2

ai[i− 1,m− i]

=

m−2∑
i=1

ai[i,m− i− 1]−
m−2∑
j=1

aj+1[j,m− j − 1]

=

m−2∑
i=1

(ai − ai+1)[i,m− i− 1] ,

which has a one-dimensional kernel given by a1 = · · · = am−1. From the
fact that

Mat(C, n) =

2n⊕
m=2

Vm (5.8.7)

it follows that the kernel of LBn(0),Bn(0) has dimension n. Therefore, its
image has dimension equal to n2 − n.
Next, we prove that dim Im(LBn,p(0),Bn,p(0)) is strictly smaller than n2 − n,
whenever p = (s1, . . . sk) 6= (n). To this end, let us denote a matrix
X ∈ Mat(C, n) as X = (Xi,j), 1 ≤ i, j ≤ k, with respect to the block decom-
position of the matrix (5.8.2). We see that [Bn,p(0), X]i,i = Bsi(0)Xi,i −
Xi,iBsi(0) for all 1 ≤ i ≤ k. From this and the second part of the theo-
rem, it follows that the image of the map given by the i’th diagonal block
of [Bn,p(0), •] has codimension si. Together, the image of all the diagonal
blocks therefore has codimension s1 + · · ·+ sk = n. However, for
i 6= j we see that [Bn,p(0), X]i,j = Bsi(0)Xi,j −Xi,jBsj (0)
= −LBsj (0),Bsi (0)(Xi,j). By Lemma 5.4.4 the image of this map has a strictly
positive codimension. From this it follows that the dimension of the image of
LBn,p(0),Bn,p(0) is strictly less than n2−n, thereby proving the theorem.

5.8.1 The Case CPn
We will start the proof of Theorem 5.6.1 with the algebra CPn = Mat(C, n).
Our goal is to determine the dimension of the set of nilpotent matrices in
CPn and of those matrices with a purely imaginary spectrum.

Theorem 5.8.3. The set of nilpotent matrices in CPn is composed of finitely
many conjugacy invariant embedded manifolds of complex dimension n2− n
or lower. Exactly one of these manifolds has dimension equal to n2 − n.
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Proof. Every nilpotent matrix is conjugate to exactly one of the matrices
Bn,p(0). Therefore, the manifolds will be the conjugacy orbits

OBn,p(0) := {A−1Bn,p(0)A | A ∈ Gl(C, n)} .

We have proven in the last section that these are indeed embedded submani-
folds of Mat(C, n), so it remains to determine their dimensions. To this end,
we note that every set OBn,p(0) is equal to the image of the smooth map

ΨBn,p(0) :Gl(n,C)→ CPn (5.8.8)

A 7→ A−1Bn,p(0)A .

Its derivative at A ∈ Gl(n,C) in the direction of V ∈ Mat(C, n) can be eval-
uated relatively easily by precomposing with the curve t 7→ exp(tV A−1)A,
which goes through A with velocity V . We get

TAΨBn,p(0)(V ) =
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

ΨBn,p(0)(exp(tV A−1)A) (5.8.9)

=
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

A−1 exp(−tV A−1)Bn,p(0) exp(tV A−1)A

= A−1(Bn,p(0)V A−1 − V A−1Bn,p(0))A

= A−1[Bn,p(0), V A−1]A .

By varying V , we see that Im(TAΨBn,p(0)) = Im(A−1[Bn,p(0), •]A). Conse-
quently, we have that

dim Im(TAΨBn,p(0)) = dim Im(A−1[Bn,p(0), •]A) = dim Im([Bn,p(0), •]) ,

which is independent of A. Hence, the map Ψ, seen as a map from Gl(C, n)
to the manifold OBn,p(0), is a surjective, smooth map whose derivative has
constant rank. Moreover, it is known that any smooth, surjective map of
constant rank between two manifolds is a submersion (see [14]). Hence, the
dimension of OBn,p(0) is equal to the dimension of Im([Bn,p(0), •]), which is
equal to n2 − n for p = (n) and strictly less in all other cases. This proves
the theorem.

Theorem 5.8.4. The set of matrices in CPn with purely imaginary spectrum
is composed of finitely many conjugacy invariant embedded manifolds of real
dimension 2n2 − n or lower. Exactly one of these manifolds has dimension
equal to 2n2 − n.
Before we can prove Theorem 5.8.4, we need another lemma. It provides
a special local chart for any conjugacy orbit. To simplify notation, we will
introduce yet another way of denoting a Lie bracket, namely adX(Y ) :=
[X,Y ] for X,Y ∈ Mat(C, n) .
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Lemma 5.8.5. For X ∈ Mat(C, n), let U, V ⊂ Mat(C, n) be two complex
linear spaces such that

U ⊕ Im adX = V ⊕ ker adX = Mat(C, n) .

Then there exist open neighborhoods WU ⊂ U and WV ⊂ V , both containing
0, and W ⊂ Mat(C, n) containing X such that the map

X : WU ×WV →W (5.8.10)
(u, v) 7→ exp(−v)(u+X) exp(v)

is a diffeomorphism. WU , WV and W can furthermore be chosen such that
OX ∩W = X ({(u, v) ∈WU ×WV | u = 0}).

Proof. The proof goes in three steps.

Step 1: We first prove that WU , WV and W exist such that X restricts to
a diffeomorphism as in the first part of the theorem. To this end, we first
define X as a map from the whole of U × V to Mat(C, n), again given by
X (u, v) = exp(−v)(u + X) exp(v). We see that X (0, 0) = X. Furthermore,
the derivative at (0, 0) in the directions of (u0, 0) and (0, v0) are given by

d

dt

ˇ

ˇ

ˇ

ˇ

t=0

exp(0)(tu0 +X) exp(0) = u0 (5.8.11)

and

d

dt

ˇ

ˇ

ˇ

ˇ

t=0

exp(−tv0)(0 +X) exp(tv0) = adX(v0) , (5.8.12)

respectively. As V ⊕ker adX = Mat(C, n), we see that {adX(v0) | v0 ∈ V } =
Im adX . From U ⊕ Im adX = Mat(C, n), we may then conclude that the
derivative of X at (0, 0) is a surjective map. Furthermore, as the dimension
of U ⊕ V is equal to that of Mat(C, n), we may conclude that the derivative
is in fact a bijection. The result of the first step now follows from applying
the inverse function theorem to X .

Step 2: Next, we argue that there exists an open neighborhood SV ⊂ V
containing 0 so that for any open TV ⊂ SV containing 0 there exists an open
R ⊂ Mat(C, n) containing X with the property that OX ∩R =
{exp(−v)X exp(v) | v ∈ TV }. To this end, we define the map

Y : V ⊕ ker adX → Gl(C, n) (5.8.13)
(v, s) 7→ exp(s) exp(v) .
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This map clearly sends (0, 0) to Id. Furthermore, identifying the tangent
space of Gl(C, n) with Mat(C, n) = V ⊕ ker adX , we see that the derivative
of Y at the point (0, 0) is exactly given by the identity. Hence, there exist
open neighborhoods 0 3 SV ⊂ V , 0 3 M ⊂ ker adX and Id 3 N ⊂ Gl(C, n)
so that Y restricts to a bijection from SV ×M to N . As a result, given
TV ⊂ SV we have that Y restricts to a bijection from TV ×M to the open
set N ′ := Y(TV ×M). If TV furthermore contains 0 then N ′ contains Id.

Now, recall from the previous section that OX is an embedded submanifold
of Mat(C, n). Furthermore, exactly as in the proof of Theorem 5.8.3, the
map

ΨX :Gl(n,C)→ Mat(C, n) (5.8.14)

A 7→ A−1XA

defines a surjective submersion onto OX . As a submersion is an open map,
and as the topology on any embedded submanifold coincides with its in-
duced topology, we see that there exists an open set R containing X so that
ΨX(N ′) = OX ∩R. Writing out ΨX(N ′) we get

ΨX(N ′) = {A−1XA | A ∈ N ′} (5.8.15)
= {exp(−v) exp(−s)X exp(s) exp(v) | (v, s) ∈ TV ×M}
= {exp(−v)X exp(v) | v ∈ TV } ,

where in the last step we have used that M ⊂ ker adX . More specifically,
s ∈ M gives that s commutes with X. Therefore, so does exp(s). We see
that indeed OX ∩ R = {exp(−v)X exp(v) | v ∈ TV }, thereby proving the
second step.

Step 3: To conclude, we show that WU , WV and W can be chosen small
enough such that OX ∩W = X ({(u, v) ∈WU ×WV | u = 0}). First, choose
WU , WV and W as in the first part of the theorem. That is, any element
w of W can be uniquely written as w = X (u, v) = exp(−v)(u + X) exp(v)
for some (u, v) ∈ WU ×WV . Next, let TV := WV ∩ SV ⊂ SV , where SV is
determined in step 2. It follows that there is an open set R so that
OX ∩ R = {exp(−v)X exp(v) | v ∈ TV }. As TV is contained in WV , we see
that {exp(−v)X exp(v) | v ∈ TV } ⊂ {exp(−v)X exp(v) | v ∈ WV } ⊂ W .
Therefore, we may assume that R lies in W . Finally, choose W ′U ⊂ WU ,
W ′V ⊂ WV and W ′ ⊂ W such that the first part of the theorem applies to
the triple W ′U , W

′
V and W ′, and such that W ′ ⊂ R. We claim that this

new triple satisfies OX ∩ W ′ = X ({(u, v) ∈ W ′U × W ′V | u = 0}). Any
element of the right hand side is of the form X (0, v) = exp(−v)X exp(v),
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and is therefore clearly contained in OX (as well as in W ′). Conversely, we
pick an element w ∈ W ′. It follows that w may be written as w = X (u, v)
for u ∈ W ′U and v ∈ W ′V . If we furthermore assume that w ∈ OX , then
since W ′ ⊂ R we may also write w = exp(−v′)X exp(v′) = X (0, v′) for some
v′ ∈ TV . However, as W ′U ⊂ WU , W ′V ⊂ WV and TV ⊂ WV , we see that
w = X (u, v) = X (0, v′) ∈ W can apparently be written in two ways as the
image of X restricted to WU × WV . This can only be true if u = 0 and
v = v′ ∈ W ′V . Hence we conclude that OX ∩W ′ ⊂ X ({(u, v) ∈ W ′U ×W ′V |
u = 0}). From this we see that the two sets are in fact equal. This proves
the lemma.

Next, we will describe the sets and matrices that will eventually parametrize
the manifolds in Theorem 5.8.4.

Definition 5.8.6. Let P(n) denote the set of partitions of n. Given any
partition p = (s1, . . . , sk) ∈ P(n), we may make a sub-partition by assigning
elements p1 ∈ P(s1), . . . , pk ∈ P(sk). All the possible ways of doing this are
captured by the set

Ξn := {(p; p1, . . . pk) | p = (s1, . . . , sk) ∈ P(n), pi ∈ P(si)∀i ∈ {1, . . . , k}} .

Note that Ξn is a finite set, as we have #Ξn ≤ (#P(n))n+1.
Given an element ξ = (p; p1, . . . pk) ∈ Ξn, we will define the set Vξ, given by

Vξ := {(x1, . . . , xk) ∈ Rk | xi 6= xj for i 6= j} .

Note that Vξ is an open subset of Rk. The definitions of Ξn and Vξ will
serve to parametrize all matrices in CPn with a purely imaginary spectrum.
In particular, given ξ = (p; p1, . . . pk) ∈ Ξn and x = (x1, . . . , xk) ∈ Vξ, we
define the complex n× n matrix

Bξ(x) =

¨

˚

˚

˚

˝

Bs1,p1
(x1i) 0 . . . 0

0 Bs2,p2(x2i) . . . 0
. . .

0 . . . 0 Bsk,pk(xki)

˛

‹

‹

‹

‚

, (5.8.16)

for i the complex unit. We will also define the matrix Bξ(0) to be the matrix
in (5.8.16) with x1 = · · · = xk = 0 (even though 0 ∈ Rk is clearly not an
element of Vξ for k > 1).

The following lemma gathers up some facts about the matrices Bξ(x) needed
to prove Theorem 5.8.4.
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Lemma 5.8.7. Given ξ = (p; p1, . . . pk) ∈ Ξn and x, y ∈ Vξ, it holds that

Im(adBξ(x)) = Im(adBξ(y)) (5.8.17)

ker(adBξ(x)) = ker(adBξ(y))

Im(adBξ(0)) ⊂ Im(adBξ(x)) .

Furthermore, we have that

dimC Im(adBξ(x)) ≤ n2 − n , (5.8.18)

with equality only when pi = (si) for all i ∈ {1, . . . , k}. Lastly, if a matrix

Ip(z) :=

¨

˚

˚

˚

˝

z1 Ids1×s1 0 . . . 0
0 z2 Ids2×s2 . . . 0

. . .
0 . . . 0 zk Idsk×sk

˛

‹

‹

‹

‚

, (5.8.19)

for z = (z1, . . . , zk) ∈ Ck lies in Im(adBξ(x)), then z1 = · · · = zk = 0.

Proof. Given X ∈ Mat(C, n) we write X = (Xi,j), 1 ≤ i, j ≤ k, with respect
to the block decomposition of the matrix (5.8.16). Whenever i 6= j, we see
that

(adBξ(x)(X))i,j = [Bξ(x), X]i,j = Bsi,pi(xii)Xi,j −Xi,jBsj ,pj (xji)

(5.8.20)

= −LBsj,pj (xji),Bsi,pi (xii)
(Xi,j) .

As xi 6= xj , it follows from Lemma 5.4.4 that the operator
LBsj,pj (xji),Bsi,pi (xii)

is a bijection. Hence by choosing Xi,j appropriately,
any value of the block (LBξ(x),Bξ(x)(X))i,j can be attained. Likewise, it
holds that

(adBξ(x)(X))j,j = LBsj,pj (xji),Bsj,pj (xji)(Xj,j) .

By Lemma 5.8.2, the image and kernel of LBsj,pj (xji),Bsj,pj (xji) are indepen-
dent of xji. Therefore, the image and kernel of adBξ(x) are independent of
x ∈ Vξ. We also conclude from this that the image of adBξ(0) is contained
in that of adBξ(x), as the image of these operators is the same in every (j, j)
block entry and because adBξ(x) is bijective in the other block entries. Next,
we note that the dimension of the image of (adBξ(x)(X))j,j is equal to s2

j−sj
when pj = (sj) and strictly less otherwise. This proves that

dim Im(LBξ(x),Bξ(x)) ≤ n2 − n , (5.8.21)
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with equality only when pi = (si) for all i ∈ {1, . . . , k}. Finally, it holds that

tr((LBξ(x),Bξ(x)(X))j,j) = tr([Xj,j , Bsj ,pj (xji)]) = 0 , (5.8.22)

for all j ∈ {1, . . . , k} and X ∈ Mat(C, n). From this it follows that Ip(z) can
only be in the image of LBξ(x),Bξ(x) when z = 0. This finishes the proof of
the lemma.

The statement that pi = (si) for all i ∈ {1, . . . , k} can be put more succinctly
as the statement that the characteristic polynomial of Bξ(x) is equal to its
minimal polynomial. It is not hard to see at this point that this condition
on a matrix is equivalent to it having an adjoint orbit of maximal dimension
n2 − n. See also [23].

Lastly, we will use the following lemma.

Lemma 5.8.8. Let {Ai}ki=1 and {Bi}ki=1 be two sets of matrices, where
Ai, Bi ∈ Mat(C, si) for some numbers si, 1 ≤ i ≤k. Set n := s1 + · · · + sk
and define A and B to be the n × n block diagonal matrices with blocks the
matrices {Ai}ki=1 and {Bi}ki=1, respectively. Suppose the eigenvalues of Ai
and Bi are the same for all i, that Ai and Aj do not share any eigenvalues
for i 6= j and that A and B are conjugate. Then, Ai and Bi are conjugate
for all i.

Proof. Both A and B can be seen as block diagonal matrices with just two
blocks, by taking the first block to be A1 or B1 and the second block to
contain all the other Ai or Bi. As these two blocks also satisfy the conditions
of the lemma, we see that we may assume that k = 2. An induction argument
then finishes the proof. Therefore, let X be an invertible matrix such that
A = X−1BX, or equivalently, XA = BX. Writing X = {Xi,j}, i, j ∈ {1, 2},
with respect to the block structure of A and B, we see thatX1,2A2 = B1X1,2.
In other words, we have LA2,B1(X1,2) = 0. However, as A2 and B1 do
not share any eigenvalues, we conclude from Lemma 5.4.4 that X1,2 = 0.
Likewise, we see that X2,1 = 0. Since X is invertible, we conclude that both
X1,1 and X2,2 are invertible. Hence, it follows that A1 = X−1

1,1B1X1,1 and
A2 = X−1

2,2B2X2,2. This proves the lemma.

Proof of Theorem 5.8.4. It follows from the definitions of Ξn and Vξ that any
matrix with purely imaginary spectrum is conjugate to at least one matrix
Bξ(x) with x ∈ Vξ. Therefore, our manifolds will be the sets

Oξ := {A−1Bξ(x)A | A ∈ Gl(C, n), x ∈ Vξ} ,
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for ξ = (p; p1, . . . pk) ∈ Ξn. These sets are not necessarily disjoint. For exam-
ple, if p ∈ P(4) is given by p = (2, 2), then ξ = (p; p1, p2) and ξ′ = (p; p2, p1)
will define the same sets Oξ = Oξ′ for all p1, p2 ∈ P(2). However, this is
the only thing that may happen; as soon as Oξ and Oξ′ share an element,
they coincide as sets. We may therefore assume these sets are disjoint after
discarding doubles.
To show that they are indeed embedded submanifolds of the proposed di-
mension, we fix a matrix Bξ(x). As in Lemma 5.8.5, let U, V ⊂ Mat(C, n)
be two complex linear spaces such that

U ⊕ Im adBξ(x) = V ⊕ ker adBξ(x) = Mat(C, n) .

By the proof of Lemma 5.8.7, we may assume that all elements of U are
block diagonal matrices with respect to the structure of Bξ(x) into k blocks.
Furthermore, we may assume that Ip(z) is an element of U for all z ∈ Ck.
Let WU ⊂ U , WV ⊂ V and W ⊂ Mat(C, n) be open sets as in Lemma 5.8.5
applied to Bξ(x). We may assume that WU is small enough so that for all
Ip(z) ∈ WU it still holds that Bξ(x) + Ip(z) has different diagonal entries
among its k blocks. Now, the set

{exp(−v)(Bξ(x) + Ip(z)) exp(v) | v ∈WV , Ip(z) ∈WU , z ∈ (iR)k} ⊂W

is readily seen to be contained in W ∩Oξ. Hence, if we can show that equal-
ity holds for these two sets then we have proven that Oξ is (around Bξ(x))
an embedded submanifold of real dimension k + 2 dimC(V ). Note that V
may be chosen the same for all x ∈ Vξ. As any element of Oξ is conjugate
to some element Bξ(x), we would conclude by homogeneity of Oξ that Oξ is
an embedded submanifold.

Therefore, let us assume that for any open set S ⊂W around Bξ(x) there is
an element in S ∩Oξ that is not of the form exp(−v)(Bξ(x) + Ip(z)) exp(v)
for v ∈ WV , Ip(z) ∈ WU and with z ∈ (iR)k. We will show that this leads
to a contradiction. From the assumptions on Bξ(x) we get a sequence of
matrices (Xr)

∞
r=0 such that

1. lim
r→∞

Xr = Bξ(x).

2. Xr is conjugate to Bξ(xr) for some xr ∈ Vξ.

3. Every Xr is not of the form exp(−v)(Bξ(x)+Ip(z)) exp(v) for v ∈WV ,
Ip(z) ∈WU and with z ∈ (iR)k.

Since Xr ∈W for all r, we may write Xr = exp(−vr)(Bξ(x)+ur) exp(vr) for
vr ∈ WV and ur ∈ WU . As the limit of Xr equals Bξ(x) = exp(0)(Bξ(x) +
0) exp(0), it follows that
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1. lim
r→∞

ur = 0.

2. Bξ(x) + ur is conjugate to Bξ(xr) for some xr ∈ Vξ.

3. lim
r→∞

vr = 0.

Note that every ur is a block diagonal matrix, as it is an element of U .
Therefore, so is Bξ(x) + ur for all r. We will denote the individual blocks
by (Bξ(x) + ur)j = Bξ(x)j + ujr = Bsj ,pj (xji) + ujr for 1 ≤ j ≤ k. Now, the
limit of all the eigenvalues of (Bξ(x) +ur)j is xji. Hence, as per assumption
xj 6= xl for j 6= l, we may conclude that for r big enough, the blocks
(Bξ(x) + ur)j and (Bξ(x) + ur)l do not share any eigenvalues if j 6= l. On
the other hand, the eigenvalues of Bξ(x) + ur are equal to those of Bξ(xr),
as these matrices are conjugate. It follows that the eigenvalue xrj i, which
appears with algebraic multiplicity sj , appears with the same multiplicity in
exactly one of the blocks of Bξ(x)+ur. Therefore, every block of Bξ(x)+ur
has exactly the same eigenvalues as some block of Bξ(xr). More precisely,
for every r there exists a permutation σr ∈ Sk so that (Bξ(x) + ur)j and
Bξ(x

r)σr(j) = Bsσr(j),pσr(j)
(xrσr(j)i) have the same eigenvalues. It therefore

follows from Lemma 5.8.8 that

(Bξ(x) + ur)j is conjugate to Bξ(xr)σr(j) for every j .

Next, by comparing traces and by noting that the limit of (Bξ(x) + ur)j is
Bξ(x)j , we see that

lim
r→∞

xrσr(j) = xj . (5.8.23)

We will use the facts we have gathered so far, together with the fact that
the orbit of Bξ(0) is an embedded manifold, to arrive at a contradiction. To
this end, we look at the expressions ujr + (xj − xrσr(j))i Idsj . From (5.8.23)
we see that

1. lim
r→∞

ujr + (xj − xrσr(j))i Idsj = 0.

2. Bξ(0)j+u
j
r+(xj−xrσr(j))i Idsj = (Bξ(x)+ur)j−xrσr(j)i Idsj is conjugate

to Bξ(xr)σr(j) − xrσr(j)i Idsj = Bξ(0)σr(j) .

In part 2, we have simply used the fact that if two matrices A and B are
conjugate, then so are A + z Id and B + z Id for any z ∈ C. If we define
yr ∈ Ck by yrj := (xj − xrσr(j))i for 1 ≤ j ≤ k, then we get for the full
matrices

1. lim
r→∞

ur + Ip(y
r) = 0.
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2. Bξ(0) + ur + Ip(y
r) is conjugate to Bξ(0).

Note that ur + Ip(y
r) ∈ U for all r.

Finally, let Ũ, Ṽ ⊂ Mat(C, n) be two complex linear spaces such that

Ũ ⊕ Im adBξ(0) = Ṽ ⊕ ker adBξ(0) = Mat(C, n) .

From Im adBξ(0) ⊂ Im adBξ(x) we see that we may choose Ũ such that U ⊂ Ũ .
We furthermore choose open sets WŨ , WṼ and W̃ as in the statement of
Lemma 5.8.5, so that OBξ(0) ∩ W̃ = X ({(u, v) ∈ WŨ ×WṼ | u = 0}). Now,
for large enough values of r, the matrices Bξ(0) + ur + Ip(y

r) will lie in W̃ .
Therefore, since Bξ(0) + ur + Ip(y

r) ∈ OBξ(0) and ur + Ip(y
r) ∈ U ⊂ Ũ , it

has to follow that ur + Ip(y
r) = 0 for large enough r. Going back to Xr, we

see that

Xr = exp(−vr)(Bξ(x) + ur) exp(vr) (5.8.24)
= exp(−vr)(Bξ(x) + Ip(−yr)) exp(vr) ,

with yrj := (xj − xrσr(j))i so that yr ∈ (iR)k. This is a direct contradiction
to the third assumption on Xr.

Hence, there does exist an open set S ∈W aroundBξ(x) where every element
of Oξ is of the form exp(−v)(Bξ(x) + Ip(z)) exp(v) for v ∈WV , Ip(z) ∈WU

and z ∈ (iR)k. In particular, we may choose W ′U ⊂ WU , W ′V ⊂ WV and
W ′ ⊂ S ⊂W as in Lemma 5.8.5 for Bξ(x). Then

Oξ∩W ′ = {exp(−v)(Bξ(x)+Ip(z)) exp(v) | v ∈W ′V , Ip(z) ∈W ′U , z ∈ (iR)k} ,

as this otherwise contradicts the unique expression as X (u, v) in W .

We see that the real dimension of Oξ is k + 2 dimC(V ). This value cannot
exceed 2n2 − n, in which case k = n and dimC(V ) = n2 − n. By Lemma
5.8.7 this is indeed the case when ξ = ((1, 1, . . . , 1); (1), . . . , (1)). This is
furthermore the only possibility, as k = n forces the partitions in ξ to be
trivial. This concludes the proof.

Remark 5.8.9. Note that the manifold of Theorem 5.8.4 of highest dimen-
sion consists of exactly those matrices with n distinct (purely imaginary)
eigenvalues. Another observation is that both the matrices of Theorem 5.8.3
and of Theorem 5.8.4 are invariant under taking the (component-wise) com-
plex conjugate. This is exactly the transformation that would occur if one
would choose [Id], [−I] ∈ End(U)/Nil(U) as the generators of the complex
structure, instead of [Id] and [I]. See Subsection 5.5.4. 4
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5.8.2 The Case RP
n

For RPn = Mat(R, n) we have the following results.

Theorem 5.8.10. The set of all nilpotent matrices in RPn consists of a finite
number of conjugacy invariant embedded manifolds. Exactly one of these has
real dimension n2 − n, whereas the others have dimension strictly less.

Theorem 5.8.11. The set of all matrices in RPn with a purely imaginary
spectrum consists of a finite number of conjugacy invariant embedded mani-
folds. Exactly one of these has real dimension n2 − dn2 e, whereas the others
have dimension strictly less.

These results will follow from the analogous results for CPn . An important
ingredient here is the following lemma.

Lemma 5.8.12. Let A ⊂ Mat(C, n) be a real subalgebra of matrices such
that

Mat(C, n) = A⊕ iA

as real vector spaces. Let A,B ∈ A be two conjugate matrices. Then they are
also conjugate using an element in A. More precisely, if there exists an X ∈
Gl(C, n) such that A = XBX−1, then there also exists a C ∈ A ∩ Gl(C, n)
such that A = CBC−1. Moreover, writing X = X1 + iX2 for X1, X2 ∈ A
and choosing ε > 0, C can be chosen such that ||C − X1||< ε. Here, ||·||
denotes (for example) the matrix norm, ||X||2:= tr(XTX).

Proof. Write X = X1 + iX2 for X1, X2 ∈ A. From A = XBX−1 it follows
that AX = XB, and hence that AX1 + iAX2 = X1B + iX2B. Comparing
parts in A and iA, we see that both AX1 = X1B and AX2 = X2B hold.
In particular, for any λ ∈ R it holds that A(X1 + λX2) = (X1 + λX2)B.
Therefore, it remains to show that X1 +λX2 ∈ A is invertible for arbitrarily
small values of λ, in which case we set C := X1 +λX2. To this end, consider
the polynomial in λ given by det(X1 + λX2). This polynomial cannot be
identically 0, as we have det(X1 + iX2) = det(X) 6= 0. Therefore, there are
only finitely many values of λ for which det(X1+λX2) = 0. We conclude that
there are real values of λ arbitrarily close to 0 for which det(X1 +λX2) 6= 0.
If X2 = 0 we set C = X1 = X. Otherwise, choose 0 ≤ λ < ε||X2||−1

and such that det(X1 + λX2) 6= 0. Then setting C := X1 + λX2, we have
||C −X1||= λ||X2||< ε||X2||−1||X2||= ε. This proves the lemma.

Proof of Theorem 5.8.10. Just as in the case of CPn , our manifolds will be
the conjugacy orbits of the elements Bn,p(0) for p ∈ P(n):

QBn,p(0) := {ABn,p(0)A−1 | A ∈ Gl(R, n)} .
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Equivalently, QBn,p(0) is the image of the map A ∈ Gl(R, n) 7→ ABn,p(0)A−1,
which has constant rank equal to dimR Im(adBn,p(0)|Mat(R,n)). Since Bn,p(0)
is a real matrix, it follows that

Im(adBn,p(0)|Mat(C,n)) = Im(adBn,p(0)|Mat(R,n))⊕ i Im(adBn,p(0)|Mat(R,n)) .

From this we conclude that dimR Im(adBn,p(0)|Mat(R,n)) ≤ n2−n, with equal-
ity only when p = (n). Therefore, it follows that every QBn,p(0) is an im-
mersed submanifold of the proposed dimension. In particular, there exists
an open set S ⊂ Gl(R, n) containing Id such that {ABn,p(0)A−1 | A ∈ S}
is an embedded submanifold of dimension dimR Im(adBn,p(0)|Mat(R,n)) con-
taining Bn,p(0). It remains to show that for a small enough neighbor-
hood T ⊂ Mat(R, n) containing Bn,p(0), any element in QBn,p(0) ∩ T lies
in {ABn,p(0)A−1 | A ∈ S}.

Assume the converse. Then there exists a sequence of elements Xr ∈
QBn,p(0) \ {ABn,p(0)A−1 | A ∈ S} such that lim

r→∞
Xr = Bn,p(0). This

same sequence then exists in Mat(C, n). Applying Lemma 5.8.5 we find
open neighborhoods WV ⊂ V containing 0 and W ⊂ Mat(C, n) contain-
ing Bn,p(0) such that any element of QBn,p(0) ∩ W ⊂ OBn,p(0) ∩ W can
be written as exp(−v)Bn,p(0) exp(v) for v ∈ WV . Here, V is a complex
linear space satisfying V ⊕ ker adBn,p(0) = Mat(C, n). We therefore write
Xr = exp(−vr)Bn,p(0) exp(vr) for large enough r. It also follows from
Lemma 5.8.5 that lim

r→∞
Xr = Bn,p(0) implies lim

r→∞
vr = 0. Hence we have

that lim
r→∞

exp(−vr) = Id. By applying Lemma 5.8.12 with A = Mat(R, n),

we find matrices Cr ∈ Mat(R, n) such that Xr = CrBn,p(0)C−1
r . As (the

real part of) exp(−vr) goes to Id, we may arrange for the Cr to have the
same property. However, then for big enough r we find that Cr ∈ S, con-
tradicting that Xr /∈ {ABn,p(0)A−1 | A ∈ S}. We conclude that QBn,p(0) is
an embedded manifold around Bn,p(0), and hence by homogeneity globally.
This proves the theorem.

To prove Theorem 5.8.11, we will first introduce the matrices that serve
to label the relevant manifolds. Given m ∈ N, let ξ ∈ Ξm be given by
ξ = (p; p1, . . . pl). Recall that this means that p = (s1, . . . sl) ∈ P(m) is
a partition of m in l numbers, whereas each pi is an element of P(si) for
1 ≤ i ≤ l. We define the open set

Wξ = {x ∈ Rl | xi > 0, xi 6= xj for all i, j ∈ {1, . . . l} such that i 6= j} .
(5.8.25)
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Next, we fix a number n ∈ N. Given m ∈ {1, . . . bn2 c}, ξ ∈ Ξm, x ∈ Wξ and
q ∈ P(n− 2m) we furthermore define the n times n matrices

Dn,ξ,q(x) :=

¨

˝

Bξ(x) 0 0

0 Bξ(x) 0
0 0 Bn−2m,q(0)

˛

‚ (5.8.26)

=

¨

˝

Bξ(x) 0 0
0 Bξ(−x) 0
0 0 Bn−2m,q(0)

˛

‚ . (5.8.27)

Note that Dn,ξ,q(x) is conjugate to Bξ′(y) for some choice of ξ′ ∈ Ξn and
y ∈ Vξ′ with entries those in x, in −x and possibly 0. This conjugation can
be done by a permutation matrix that depends only on ξ and m and is just
an artifact of our convention to have permutations ordered. We also define
the n times n matrices

Zn,m :=

¨

˝

Idm i Idm 0
i Idm Idm 0

0 0 Idn−2m

˛

‚ . (5.8.28)

These have the property that for any complex matrix X of the form

X :=

¨

˝

Y 0 0
0 Y 0
0 0 W

˛

‚ , (5.8.29)

where Y is a complex m times m matrix and W is a real n − 2m times
n− 2m matrix, the matrix Zn,mXZ−1

n,m is real (i.e. has real entries). Lastly
for ξ = (p; p1, . . . pl) ∈ Ξm and z ∈ Cl, we define the matrices

Īξ(z) :=

¨

˝

Ip(z) 0 0

0 Ip(z) 0
0 0 0

˛

‚ . (5.8.30)

Proof of Theorem 5.8.11. Note that every real matrix with a purely imagi-
nary spectrum is either nilpotent, or contained in one of the sets

Qξ,q := {AZn,mDn,ξ,q(x)Z−1
n,mA

−1 | A ∈ Gl(R, n), x ∈Wξ} ⊂ Mat(R, n) .

Here we have ξ ∈ Ξm and q ∈ P(n − 2m), where m may furthermore vary
from 1 to bn2 c. It can again be seen that two sets Qξ,q and Qξ′,q′ are either
the same or disjoint. The set Qξ,q is equal to the image of the smooth map

Ψξ,q : Gl(R, n)×Wξ → Mat(R, n) (5.8.31)

(A, x) 7→ AZn,mDn,ξ,q(x)Z−1
n,mA

−1 .

197



CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

We will first show that this map has constant rank, thereby showing that
its image is an immersed manifold of the proposed dimension. After that,
we show that it is an embedded manifold, by comparing to the complex case
similarly to what we did in the proof of Theorem 5.8.10.
We fix a point (A, x) ∈ Gl(R, n)×Wξ and a direction (V,w) ∈ Mat(R, n)⊕Rl.
A curve through (A, x) with velocity (V,w) is then given by
t 7→ (A exp(tA−1V ), x+ tw) and we find

T(A,x)Ψξ,q(V,w)

=
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

A exp(tA−1V )Zn,mDn,ξ,q(x+ tw)Z−1
n,m exp(−tA−1V )A−1

= A[A−1V,Zn,mDn,ξ,q(x)Z−1
n,m]A−1 +AZn,mĪξ(iw)Z−1

n,mA
−1 .

(5.8.32)

As conjugating by A does not change the dimension of a space, and as
A−1V varies over the real matrices as V does, we see that the rank of the
linearization is independent of A. We therefore set A equal to the identity.
It remains to determine the dimension of the real space

{[V,Zn,mDn,ξ,q(x)Z−1
n,m] + Zn,mĪξ(iw)Z−1

n,m | V ∈ Mat(R, n), w ∈ Rl} .
(5.8.33)

First suppose a matrix B is both of the form Zn,mĪξ(iw)Z−1
n,m for some

w ∈ Rl and of the form [V,Zn,mDn,ξ,q(x)Z−1
n,m] for some V ∈ Mat(R, n).

Then Z−1
n,mBZn,m is a complex matrix that can be written as Īξ(iw) and

as [V ′, Dn,ξ,q(x)] for some V ′ ∈ Mat(C, n). This is a contradiction to the
fact that the diagonal blocks of any element of the form [V ′, Dn,ξ,q(x)] have
vanishing trace, unless w = 0 and hence B = 0 (compare to the proof of
Lemma 5.8.7). We conclude that the space in (5.8.33) is a direct sum of its
two components. Clearly we have that the real dimension of

{Zn,mĪξ(iw)Z−1
n,m | w ∈ Rl}

equals l. Furthermore, as Zn,mDn,ξ,q(x)Z−1
n,m is a real matrix, we have that

the real dimension of

{[V,Zn,mDn,ξ,q(x)Z−1
n,m] | V ∈ Mat(R, n)}

is equal to the complex dimension of

{[V,Zn,mDn,ξ,q(x)Z−1
n,m] | V ∈ Mat(C, n)} .
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This latter space has the same complex dimension as the space

{[V,Dn,ξ,q(x)] | V ∈ Mat(C, n)}

which we know from Lemma 5.8.7 to be independent of x, and furthermore
at most equal to n2−n (recall that Dn,ξ,q(x) is conjugate to Bξ′(y) for some
ξ′ ∈ Ξn and y ∈ Vξ′). By the constant rank theorem, every set Qξ,q is an
immersed manifold of real dimension at most n2 − n + bn2 c = n2 − dn2 e.
Furthermore, to get this exact number, we need to have that m = bn2 c and
that ξ = ((1, . . . 1); (1), . . . (1)) ∈ Ξm. This also fixes q to be either (1) (if n
is odd) or empty, (if n is even). In both cases all eigenvalues of Dn,ξ,q(x) are
different, and we see that the dimension of the image of its adjoint operator
is indeed equal to n2 − n. We conclude that the maximal value of n2 − dn2 e
is attained in exactly one case. Note that the dimension of any nilpotent
orbit is at most n2 − n, which is less than n2 − dn2 e for n > 1. If n = 1 then
the nilpotent matrices are the matrices with a purely imaginary spectrum,
both sets being equal to {0}.
Next, we prove that Qξ,q is in fact an embedded manifold of Mat(R, n). To
this end, we fix x ∈ Wξ. By the constant rank theorem, there exist open
neighborhoods S ⊂ Gl(R, n) containing Id and T ⊂ Wξ containing x such
that

{Ψξ,q(A, y) | A ∈ S, y ∈ T} ⊂ Mat(R, n)

is an embedded manifold of real dimension equal to the rank of the deriva-
tive of Ψξ,q. It remains to show that for S and T sufficiently small, there
are no other elements of Qξ,q nearby. Assuming the converse, we get a se-
quence of real matrices (Xr)

∞
r=0 in Qξ,q limiting Zn,mDn,ξ,q(x)Z−1

n,m that are
not in this embedded manifold. Pick a permutation matrix P such that
PDn,ξ,q(x)P−1 =: Bξ′(y) for some ξ′ ∈ Ξn and y ∈ Vξ. This permutation
matrix just reorders the blocks, so that their sizes are decreasing. We define
Yr := PZ−1

n,mXrZn,mP
−1, so that the limit of Yr is equal to Bξ′(y). Note

that the Yr may not be real matrices anymore. From the Jordan normal
form we see that Qξ,q ⊂ Oξ′ . Therefore, Xr describes a sequence in Oξ′ . By
conjugacy invariance of Oξ′ , so does Yr. By the conclusion at the end of the
proof of Theorem 5.8.4, we see that we may write

Yr = exp(−vr)(Bξ′(y) + Iξ′(z
r)) exp(vr) (5.8.34)

for certain complex matrices vr and with zr ∈ (iR)k. Here, k is determined
by ξ′ = ((s1, . . . sk); p1, . . . pk). It furthermore holds that lim

r→∞
vr = 0 and

lim
r→∞

zr = 0.
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Our next step is to show that for sufficiently large values of r, the ma-
trices P−1(Bξ′(y) + Iξ′(z

r))P are of the form Dn,ξ,q(x
r) for some xr ∈

Wξ. If this holds, then the matrices Zn,mP−1(Bξ′(y) + Iξ′(z
r))PZ−1

n,m =
Zn,mDn,ξ,q(x

r)Z−1
n,m are real. As they are furthermore conjugate to the real

matrices Xr, we conclude from Lemma 5.8.12 that this conjugation can be
done by real matrices as well. We will then finish the proof by showing that
this leads to a contradiction.
To show that the matrices P−1(Bξ′(y)+Iξ′(z

r))P are of the form Dn,ξ,q(x
r),

we need to show that the eigenvalues in the different blocks of Bξ′(y)+Iξ′(z
r)

satisfy a property that states which pairs of blocks have eigenvalues with op-
posite sign. Motivated by this, we say that an element v ∈ Ck satisfies the
real-property if there exists a function τ : {1, . . . k} → {1, . . . k} such that
vj = −vτ(j) for all indices j. Note that the eigenvalues in the blocks of
Bξ′(y) + Iξ′(z

r) have this property, as they are conjugate to the real ma-
trices Xr ∈ Oξ′ . Likewise, y ∈ Vξ′ ⊂ Ck has the real-property, for some
involution τ0. In fact, there is only one function from {1, . . . k} to itself for
which y has this property. For, if τ1 is another, and we have τ0(j) 6= τ1(j)
for some index j, then yτ0(j) = −yj = yτ1(j). However, as the entries of y
are just those of x ∈ Wξ, minus those and perhaps 0, the entries of y are
all different. This shows that such a j cannot exist, and therefore that τ0 is
unique. The same therefore holds for iy
Now, all the elements in Ck that satisfy the real-property form a set that is
the union of a finite number of hyperplanes. These hyperplanes are indexed
by all the possible functions from {1, . . . k} to itself, and are all of a strictly
smaller dimension than Ck. Since iy lies in exactly one such hyperplane,
its distance to the other hyperplanes is strictly positive. Therefore, as the
elements iy + zr have the real-property and limit iy, they too will lie in
the hyperplane indexed by τ0 for large enough values of r. This shows that
for large enough values of r, the eigenvalues of Bξ′(y) + Iξ′(z

r) are paired
correctly, and we may write P−1(Bξ′(y) + Iξ′(z

r))P = Dn,ξ,q(x
r) for some

xr ∈Wξ.
Returning to the Xr, we have

Xr = Zn,mP
−1 exp(−vr)(Bξ′(y) + Iξ′(z

r)) exp(vr)PZ
−1
n,m (5.8.35)

= ArZn,mP
−1(Bξ′(y) + Iξ′(z

r))PZ−1
n,mA

−1
r

= ArZn,mDn,ξ,q(x
r)Z−1

n,mA
−1
r ,

for Ar := Zn,mP
−1 exp(−vr)PZ−1

n,m. As vr goes to 0, we see that the limit
of Ar is the identity. By Lemma 5.8.12, there exist real matrices Cr such
that

Xr = CrZn,mDn,ξ,q(x
r)Z−1

n,mC
−1
r = Ψξ,q(Cr, xr) (5.8.36)
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with furthermore lim
r→∞

Cr = Id. Since it also holds that lim
r→∞

xr = x, we see
that (Cr, xr) ∈ S × T for large enough r. This contradicts our assumption,
and hence Qξ,q is locally around Zn,mDn,ξ,q(x)Z−1

n,m an embedded mani-
fold. By homogeneity, it is globally an embedded manifold. This proves the
theorem.

Note that it follows from the proof of Theorem 5.8.11 that the unique ma-
nifold of highest dimension consists exactly of those matrices with no double
eigenvalues.

5.8.3 The Case HP
n

Recall that

HPn :=

{ˆ
X Y
−Y X

˙

, X, Y ∈ Mat(C, n)

}
⊂ Mat(C, 2n) (5.8.37)

satisfies Mat(C, 2n) = HPn ⊕ iHPn as real vector spaces. Recall also that

HPn = {Z ∈ Mat(C, 2n) such that SZ = ZS} , (5.8.38)

for

S =

ˆ

0 Idn
− Idn 0

˙

. (5.8.39)

This matrix satisfies S2 = − Id2n. Our aim is to prove the following theo-
rems.

Theorem 5.8.13. The set of all nilpotent matrices in HPn consists of a finite
number of conjugacy invariant embedded manifolds. Exactly one of these has
real dimension 4n2 − 4n, whereas the others have dimension strictly less.

Theorem 5.8.14. The set of all matrices in HPn with a purely imaginary
spectrum consists of a finite number of conjugacy invariant embedded man-
ifolds. Exactly one of these has real dimension 4n2 − n, whereas the others
have dimension strictly less.

The following lemma will enable us to describe those elements in HPn with
a vanishing or purely imaginary spectrum. This result is known, see for
example [25], but a relatively short proof is given for completeness. The
techniques used in the proof below are known to experts, but can be hard
to find in the literature.
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Lemma 5.8.15. Any element of HPn is conjugate to an element of the form
ˆ

N 0
0 N

˙

. (5.8.40)

Here, N is a complex matrix in Jordan normal form. Note that the matrix
of (5.8.40) is an element of HPn . Thus, in essence, the Jordan normal form
of an element in HPn is again in HPn .

Proof. Let Z be an element of HPn . We will show that the Jordan blocks of
Z corresponding to an eigenvalue λ ∈ C \ R are exactly the same as those
corresponding to λ (albeit complex conjugate), whereas those corresponding
to an eigenvalue µ ∈ R come in pairs. By permuting the Jordan blocks we
can then arrange for Z to be conjugate to an element of the form (5.8.40).
To this end, let λ ∈ C \ R be a complex eigenvalue of Z. Without loss of
generality, we may assume that the dimension of the generalized eigenspace
of λ is at least that of its complex conjugate λ. Let {e1, . . . em} ⊂ Mat(C, 2n)
be a set of linearly independent vectors spanning the generalized eigenspace
of λ. Assume furthermore that Ze1 = λe1 and Zei = λei + siei−1 for i 6= 1
and with si ∈ {0, 1}. In other words, {e1, . . . em} put Z, restricted to the
generalized eigenspace of λ, in its Jordan normal form. We then have that

Z(Se1) = SZe1 = Sλe1 = λ(Se1) , (5.8.41)

and likewise

Z(Sei) = SZei = S(λei + siei−1) = λ(Sei) + si(Sei−1) (5.8.42)

for all other i. Hence, if we can prove that the set {Se1, . . . Sem} is a basis
for the generalized eigenspace of λ then the Jordan blocks do indeed agree.
As we assumed that the dimension of the generalized eigenspace of λ is at
least that of λ, it suffices to check linear independence of {Se1, . . . Sem}.
Therefore, write

m∑
i=1

aiSei = 0 (5.8.43)

with ai ∈ C. Applying S and taking the complex conjugate yields

m∑
i=1

−aiei = 0 . (5.8.44)

As the ei are linearly independent, we see that −ai = ai = 0 for all i. Hence,
the Sei are linearly independent as well.

202



5.8. GEOMETRY; COUNTING DIMENSIONS

Next, let µ ∈ R be a real eigenvalue of Z. As the statement of the lemma
holds for Z if and only if it holds for Z −µ Id2n, we may assume that µ = 0.
We will need that the kernel of Z is always even dimensional. To show this,
let e1 be a non-zero element of the kernel of Z. It follows that Se1 in also
in the kernel of Z. Furthermore, Se1 and e1 are linearly independent, as

ae1 + b(Se1) = 0 , (5.8.45)

for a, b ∈ C implies

S(ae1 + bSe1) = aSe1 − be1 = 0 , (5.8.46)

and so

a(Se1)− be1 = 0 . (5.8.47)

Note that S = S. Combining expressions (5.8.45) and (5.8.47), we find

0 = a[ae1 + b(Se1)]− b[a(Se1)− be1] = (|a|2+|b|2)e1 . (5.8.48)

Hence, we have that a = b = 0. Next, assume that
W := spanC(e1, Se1, . . . em, Sem) is a 2m dimensional subspace of the kernel
of Z. Suppose f is a nonzero element that is in the kernel, but not in W .
Then Sf is also in the kernel. If furthermore we have

w + af + b(Sf) = 0 , (5.8.49)

for some w ∈W and a, b ∈ C, then we get

0 = a[w + af + b(Sf)]− b[Sw + aSf − bf ] (5.8.50)

= (aw − bSw) + (|a|2+|b|2)f . (5.8.51)

Because Sw ∈W , we see that aw−bSw ∈W . Hence, it holds that a = b = 0
and w = 0. This proves that the kernel has to be even dimensional.
Finally, let Qm denote the number of times Bm(0) appears in the Jordan
normal form of Z. Let l denote the highest number such that Ql is odd. If
l = 1 then we see from

dim(kerZ) = Q1 + . . . Q2n , (5.8.52)

that dim(kerZ) has to be odd, contradicting our previous result. Likewise,
l = 2n leads to the contradiction dim(kerZ) = 1. For 1 < l < 2n we see
that

dim(kerZl−1) =

l−1∑
i=1

iQi +

2n∑
i=l

(l − 1)Qi , (5.8.53)
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and

dim(kerZl) =

l∑
i=1

iQi +

2n∑
i=l+1

lQi . (5.8.54)

Here we have used that Bm(0)k = 0 for k ≥ m and that dim(kerBm(0)k) = k
for 1 ≤ k ≤ m. Subtracting expression (5.8.53) from expression (5.8.54) and
interpreting the numbers modulo 2, we find

0 = (l − (l − 1))Ql +

2n∑
i=l+1

(l − (l − 1))Qi = Ql , (5.8.55)

contradicting that Ql is odd. We conclude that a largest l such that Ql is
odd does not exist. As Qk = 0 for all k > 2n due to the size of Z, we see
that all Bk(0) appear an even number of times. This proves the lemma.

Combining Lemmas 5.8.15 and 5.8.12, we see that Z ∈ HPn has a vanishing
(or purely imaginary) spectrum, if and only if there exists an invertible
C ∈ HPn such that CZC−1 if of the form (5.8.40) with N in Jordan normal
form and with a vanishing (or purely imaginary) spectrum.

Proof of Theorem 5.8.13. Define B̃n,p(0) for p ∈ P(n) to be the matrix

B̃n,p(0) :=

ˆ

Bn,p(0) 0
0 Bn,p(0)

˙

∈ HPn . (5.8.56)

As before, the smooth map

Ψp : HPn ∩Gl(2n,C)→ HPn (5.8.57)

Z 7→ ZB̃n,p(0)Z−1

has constant rank equal to the dimension of Im(adB̃n,p(0) |HPn ). Note that
Z−1 ∈ HPn whenever Z ∈ HPn is invertible. This follows from the Cayley-
Hamilton theorem, or from the fact that HPn is the image of an algebra of
equivariant maps under a morphism of algebras. It remains to determine the
dimension of Im(adB̃n,p(0) |HPn ), and to prove that the image of Ψp is indeed
an embedded manifold. We denote this image by SB̃n,p(0). To determine the
dimension, let us denote an element Z ∈ HPn given by

Z =

ˆ

X Y
−Y X

˙

(5.8.58)
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as Z = [X|Y ]. We see that in this notation,
adB̃n,p(0)(Z) = [adBn,p(0)(X)|adBn,p(0)(Y )]. Hence, as X and Y may be
chosen freely, we see that the complex dimension of the image of adB̃n,p(0)

equals at most n2 − n+ n2 − n = 2n2 − 2n. Hence the real dimension is at
most 4n2 − 4n. Equality is furthermore only attained when p = (n).
Because Ψp is a smooth map of constant rank, there exists an open set
S ⊂ HPn containing Id such that Ψp(S) is an embedded submanifold of HPn
containing B̃n,p(0). Therefore, let (Xr)

∞
r=0 be a sequence of elements in

SB̃n,p(0) ⊂ HPn that has B̃n,p(0) as its limit. We need to show that Xr lies
in Ψp(S) for large enough values of r. This would prove that SB̃n,p(0) is
locally around B̃n,p(0) an embedded submanifold, analogous to the proof of
Theorem 5.8.10. As we have the inclusions HPn ⊂ Mat(C, 2n) and SB̃n,p(0) ⊂
OB̃n,p(0), we may use Lemma 5.8.5 to write

Xr = exp(−vr)B̃n,p(0) exp(vr) (5.8.59)

for sufficiently large r, and for certain complex matrices vr that limit 0. As
the matrices exp(−vr) limit Id2n, we see by Lemma 5.8.12 that there exist
matrices Cr ∈ HPn ∩Gl(2n,C) such that

Xr = CrB̃n,p(0)C−1
r . (5.8.60)

It follows from Lemma 5.8.12 that the Cr may furthermore be chosen such
that their limit is Id2n as well. In particular, we see that Cr ∈ S for suffi-
ciently large r, proving that Xr ∈ Ψp(S) for sufficiently large r. This shows
that SB̃n,p(0) is locally an embedded submanifold. Hence, by homogeneity,
it is so globally. This proves the theorem.

In order to prove Theorem 5.8.14, we will again introduce some notation.
Given an integer 1 ≤ m ≤ n and an elements ξ = (p; p1, . . . pl) ∈ Ξm, we
(re)introduce the open set

Wξ = {x ∈ Rl | xi > 0, xi 6= xj for all i, j ∈ {1, . . . l} such that i 6= j} .
(5.8.61)

Next, given ξ ∈ Ξm, x ∈ Wξ and q ∈ P(n − m), we define the n times n
matrix

Hξ,q(x) :=

ˆ

Bξ(x) 0
0 Bn−m,q(0)

˙

, (5.8.62)
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and the matrix

H̃ξ,q(x) :=

ˆ

Hξ,q(x) 0

0 Hξ,q(x)

˙

=

ˆ

Hξ,q(x) 0
0 Hξ,q(−x)

˙

∈ HPn .

(5.8.63)

In the notation of the proof of Lemma 5.8.13 we have H̃ξ,q(x) = [Hξ,q(x)|0].
Lastly, we introduce the matrices

I ′ξ(z) :=

ˆ

Ip(z) 0
0 0

˙

∈ Mat(C, n) , (5.8.64)

for z ∈ Cl, and Ĩξ(z) := [I ′ξ(z)|0] ∈ HPn .
The following lemma will be used to count the dimensions of the manifolds
of Theorem 5.8.13.

Lemma 5.8.16. The dimension of the image of L
Hξ,q(x),Hξ,q(x)

is indepen-
dent of x ∈Wξ. Furthermore, the operator L

Hξ,q(x),Hξ,q(x)
is surjective if and

only if m = n. That is, if and only if Hξ,q(x) has only non-zero eigenvalues.

Proof. Let us denote byXi,j , i, j ∈ {1, 2}, a block of a matrixX ∈ Mat(C, n)
corresponding to the block structure of the matrix (5.8.64). For i = 1 and
j = 2 we see that

(L
Hξ,q(x),Hξ,q(x)

(X))1,2 = L
Bn−m,q(0),Bξ(x)

(X1,2) . (5.8.65)

As Bn−m,q(0) and Bξ(x) have no eigenvalues in common, Lemma 5.4.4 tells
us that the operator L

Bn−m,q(0),Bξ(x)
is a bijection. Similarly the map,

X2,1 7→ LBξ(x),Bn−m,q(0)(X2,1)

is a bijection, corresponding to the other off-diagonal block. For i = j = 1
we see that

(L
Hξ,q(x),Hξ,q(x)

(X))1,1 = L
Bξ(x),Bξ(x)

(X1,1) . (5.8.66)

As Bξ(x) and Bξ(x) = Bξ(−x) have no eigenvalues in common, the map
L
Bξ(x),Bξ(x)

is again a bijection. Lastly, we have that

(L
Hξ,q(x),Hξ,q(x)

(X))2,2 = LBn−m,q(0),Bn−m,q(0)(X2,2) . (5.8.67)

By Lemma 5.4.4, this map is never a bijection (when n − m > 0). It is,
however, independent of x ∈ Wξ. This proves that (the dimension of) the
image of L

Hξ,q(x),Hξ,q(x)
is independent of x ∈ Wξ. It also proves that this

operator is a bijection if and only if n = m. This concludes the proof.
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Proof of Theorem 5.8.14. The proof will be analogous to that of Theorem
5.8.11. First, we define a smooth map for every pair (ξ, q) ∈ Ξm×P(n−m)
and show that this map is of constant rank. Then we show that the images of
these maps are embedded manifolds, by comparing to the result of Theorem
5.8.4.
For m ∈ {1, . . . n}, ξ ∈ Ξm and q ∈ P(n−m) we define the smooth map

Ψ̃ξ,q :HPn ∩Gl(2n,C)×Wξ → HPn (5.8.68)

(A, x) 7→ AH̃ξ,q(x)A−1 .

As was the case for CPn and RPn , some of the sets

Sξ,q := {Ψ̃ξ,q(A, x) | (A, x) ∈ HPn ∩Gl(2n,C)×Wξ} (5.8.69)

may coincide for different values of (ξ, q). However, after discarding dou-
bles they will be disjoint. It follows from Lemmas 5.8.12 and 5.8.15 that
any element of HPn with a purely imaginary spectrum is either nilpotent or
contained in one of these sets. Similar to the proof of Theorem 5.8.11, the
image of the derivative of Ψ̃ξ,q at a point (A, x) ∈ HPn ∩ Gl(2n,C) ×Wξ is
given by

Im(T(A,x)Ψ̃ξ,q)

= {A[A−1V, H̃ξ,q(x)]A−1 +AĨξ(iw)A−1 | (V,w) ∈ HPn × Rl}
= {A[V, H̃ξ,q(x)]A−1 +AĨξ(iw)A−1 | (V,w) ∈ HPn × Rl} . (5.8.70)

The dimension of this space is equal to that of

{[V, H̃ξ,q(x)] + Ĩξ(iw) | (V,w) ∈ HPn × Rl} .

Now, H̃ξ,q(x) is a block-diagonal matrix. Hence, all the diagonal blocks of
an element of the form [V, H̃ξ,q(x)] have vanishing trace. Therefore, the only
element both of the form [V, H̃ξ,q(x)] for V ∈ HPn and of the form Ĩξ(iw) for
w ∈ Rl is 0. Compare to the proof of Lemma 5.8.7. We conclude that

{[V, H̃ξ,q(x)] + Ĩξ(iw) | (V,w) ∈ HPn × Rl}
={[V, H̃ξ,q(x)] | V ∈ HPn } ⊕ {Ĩξ(iw) | w ∈ Rl} . (5.8.71)

In order to show that Ψ̃ξ,q is a map of constant rank, it remains to show
that the dimension of {[V, H̃ξ,q(x)] | V ∈ HPn } is independent of the choice
of x ∈Wξ. To this end, we write V = [V1|V2] in the notation of the proof of
Theorem 5.8.13. Writing out the commutator, we see that

[V, H̃ξ,q(x)] =[LHξ,q(x),Hξ,q(x)(V1) | L
Hξ,q(x),Hξ,q(x)

(V2)] (5.8.72)

=[− adHξ,q(x)(V1) | L
Hξ,q(x),Hξ,q(x)

(V2)] .
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From a similar reasoning as that in the proof of Lemma 5.8.7, we see that
the image of adHξ,q(x) is independent of x ∈ Wξ. Note in particular that
there exists a permutation matrix Q such that QHξ,q(x)Q−1 = Bξ′(x

′) for
some ξ′ ∈ Ξn and with x′ ∈ Vξ′ . This permutation matrix just reorders the
blocks to adhere to our convention to have partitions ordered, and does not
depend on x. The entries of x′ are just those of x with an added 0 if n 6= m.
From this we see that the complex dimension of the image of adHξ,q(x) is
at most n2 − n, with equality only when the partitions q and p1 till pl in
ξ = (p; p1, . . . pl) are all trivial. From Lemma 5.8.16 we see that the image of
L
Hξ,q(x),Hξ,q(x)

is likewise independent of x. This shows that Ψ̃ξ,q is indeed
a smooth map of constant rank.
It also follows that the real dimension of the image of Ψ̃ξ,q is equal to that of
dimR Im(adH̃ξ,q(x)|HPn ) + l. By our bound on the dimension of the image of
adHξ,q(x), combined with Lemma 5.8.16 we see that this value cannot exceed
2(n2 − n) + 2n2 + n = 4n2 − n. For equality we need l = n. This value of l
forces m to be equal to n as well, and forces ξ to equal ((1, . . . 1); (1) . . . (1)).
From our remark about the image of adHξ,q(x) and from the result of Lemma
5.8.16 we see that the real dimension of Sξ,q is indeed equal to 4n2 − n in
the unique case when l = m = n.
To summarize so far, we have found that the sets Sξ,q are all immersed
manifolds of real dimension 4n2−n or lower. The exact value of 4n2−n only
occurs when all eigenvalues of H̃ξ,q(x) are different (and hence unequal to
0). It remains to show that the sets Sξ,q are in fact embedded submanifolds.
By the constant rank theorem, we know that for any x ∈Wξ there exists an
open set S×T ⊂ HPn ∩Gl(2n,C)×Wξ containing (Id, x) such that Ψ̃ξ,q(S×T )

is a submanifold of HPn containing H̃ξ,q(x). It remains to show that other
elements of Sξ,q do not come arbitrarily close to H̃ξ,q(x). To this end, assume
the converse, so that (Xr)

∞
r=0 is a sequence in Sξ,q\Ψ̃ξ,q(S×T ) converging to

H̃ξ,q(x). Let P be a permutation matrix such that PH̃ξ,q(x)P−1 = Bξ′(x
′)

for some ξ′ ∈ Ξ2n and x′ ∈ Vξ′ (consisting of entries in x, minus those
and possibly 0). Note that P depends only on ξ and q. From their Jordan
normal forms, we see that H̃ξ,q(y) ∈ Oξ′ for all y ∈ Wξ. By conjugacy
invariance of Oξ′ we conclude that Sξ,q ⊂ Oξ′ ⊂ Mat(C, 2n). Therefore,
(Yr)

∞
r=0 := (PXrP

−1)∞r=0 is a sequence in Oξ′ converging to Bξ′(x′). By the
conclusion at the end of Theorem 5.8.4, we see that we may write

Yr = exp(−vr)(Bξ′(x′) + Iξ′(z
r)) exp(vr) , (5.8.73)

for large enough values of r. Here, the vr are complex matrices satisfying
lim
r→∞

vr = 0, so that lim
r→∞

exp(−vr) = Id. We furthermore have zr ∈ (iR)k

for k := dim(Vξ), satisfying lim
r→∞

zr = 0.
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As in the proof of Theorem 5.8.11, we want to conclude that P−1(Bξ′(x
′) +

Iξ′(z
r))P is an element of the form H̃ξ,q(x

r) ∈ HPn for large enough values
of r. As the matrices P−1(Bξ′(x

′) + Iξ′(z
r))P are conjugate to Xr ∈ HPn ,

we will then conclude from Lemma 5.8.12 that this conjugation can be done
by elements in HPn . This will then lead to a contradiction, as it will force
the Xr to lie in Ψ̃ξ,q(S × T ) for large enough values of r.
To show that the matrices P−1(Bξ′(x

′) + Iξ′(z
r))P are of the form H̃ξ,q(x

r)
for certain values of xr ∈ Wξ, we need to show that the eigenvalues in the
blocks of Bξ′(x′) + Iξ′(z

r) come in prescribed pairs with opposite signs. In
particular, if m 6= n then a prescribed block has to be nilpotent. To this
end, we reintroduce the real-property from the proof of Theorem 5.8.11.
An element v ∈ Ck has this property if for some function τ : {1, . . . k} →
{1, . . . k} we have v{τ(j)} = −vj . As the matrices Bξ′(x′) and Bξ′(x

′) +
Iξ′(z

r) are conjugate to elements in Sξ,q ⊂ HPn , we see that if λ ∈ iR occurs
as an eigenvalue, then so does −λ = λ. Therefore, these matrices have
the real-property. Exactly as the proof of Lemma 5.8.11, Bξ′(x′) has this
property for exactly one function τ0. (Note that P has been chosen such
that the different blocks of Bξ′(x′) have different eigenvalues, respecting the
notation.) It follows that for large enough values of r, the eigenvalues of
Bξ′(x

′) + Iξ′(z
r) satisfy the real-property for τ0 as well. This shows that the

eigenvalues in the blocks of Bξ′(x′) + Iξ′(z
r) are arranged so that we may

write P−1(Bξ′(x
′) + Iξ′(z

r))P = H̃ξ,q(x
r) for certain xr ∈ Wξ. Note that

lim
r→∞

xr = x. Returning to the Xr, we see that for r large enough we have

Xr = P−1 exp(−vr)(Bξ′(x′) + Iξ′(z
r)) exp(vr)P (5.8.74)

= P−1 exp(−vr)PP−1(Bξ′(x
′) + Iξ′(z

r))PP−1 exp(vr)P

= (P−1 exp(−vr)P )H̃ξ,q(x
r)(P−1 exp(−vr)P )−1 .

As Xr and H̃ξ,q(x
r) are both elements of HPn , we conclude from Lemma

5.8.12 that there exist invertible matrices Cr ∈ HPn such that

Xr = CrH̃ξ,q(x
r)C−1

r (5.8.75)

= Ψ̃ξ,q(Cr, x
r) .

As lim
r→∞

exp(−vr) = Id, it also holds that lim
r→∞

P−1 exp(−vr)P = Id. There-
fore, we see that the Cr can be chosen such that lim

r→∞
Cr = Id. Because it

also holds that lim
r→∞

xr = x, we see that for large enough values of r, we

have that Xr ∈ Ψ̃ξ,q(S×T ). This directly contradicts our assumptions, and
we conclude that Sξ,q is locally around H̃ξ,q(x) an embedded submanifold.
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By homogeneity, Sξ,q is globally an embedded submanifold. This proves the
theorem.

It follows from the proof of Theorem 5.8.14 that the unique manifold of
highest dimension consists again of exactly those matrices with no double
eigenvalues.
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