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CHAPTER 5

TRANSVERSALITY AND
GENERALIZED SYMMETRY

5.1 Abstract

We prove that a generic k-parameter bifurcation of a dynamical system with
a monoid symmetry occurs along a generalized kernel or center subspace of
a particular type. More precisely, any (complementable) subrepresentation
U is given a number Ky and a number Cy. A k-parameter bifurcation can
generically only occur along a generalized kernel isomorphic to U if k > Ky .
It can generically only occur along a center subspace isomorphic to U if
k > Cy. The numbers Ky and Cy depend only on the decomposition of
U into indecomposable subrepresentations. In particular, we prove that a
generic one-parameter steady-state bifurcation occurs along one absolutely
indecomposable subrepresentation. Likewise, it follows that a generic one-
parameter Hopf bifurcation occurs along one indecomposable subrepresen-
tation of complex or quaternionic type, or along two isomorphic absolutely
indecomposable subrepresentations. In order to prove these results, we show
that the set of endomorphisms with generalized kernel (or center subspace)
isomorphic to U is the disjoint union of a finite set of conjugacy invariant
submanifolds of codimension Ky and higher (or Cy and higher). The results
in this article hold for any monoid, including non-compact groups.



5.2. INTRODUCTION

5.2 Introduction

Symmetries play an important role in the study of dynamical systems. Equi-
variant dynamics, the mathematical discipline concerned with this interplay,
has correspondingly gained a lot of attention and has developed into a well
established field of research. It should be noted however, that many results
from this field require the symmetries in question to form a group, often a
finite one or a compact topological group. See for example [5, |6, [8 [9] for
more on equivariant dynamics.

Recent developments in the study of network dynamical systems have called
for a generalization of this. More precisely, it can be shown that under mild
conditions, a dynamical system with a network structure can be seen as
the restriction of an equivariant system to some invariant subspace. This
equivariant system is referred to as the fundamental network of the original
network, see Figure [5.1} Often the symmetries appearing in this latter net-
work system do not form a group, but rather a more relaxed structure such
as a semigroup, monoid (i.e. a semigroup with an identity) or category. See
|16} 14, |15] [19) |20} 18] for more on this formalism. Other authors have like-
wise linked network structures to more general algebraic concepts, such as
the groupoid formalism by Golubitsky and Stewart (|7]), or the categorical
approach by Lerman and Deville (]2]).

This article deals with the question of generic bifurcations in equivariant
systems for such generalized symmetries. Let f(z,A) be a family of vector
fields, indexed by some parameter A. It is known that for a bifurcation to
occur in the differential equation & = f(x,\), often a certain condition on
the spectrum of the linearization D, f has to hold. For example, the implicit
function theorem excludes (non-trivial) steady-state bifurcations unless the
matrix D, f(zo,\o) at the bifurcation point (xg, Ag) has a non-trivial ker-
nel. Furthermore, Hopf bifurcations are associated with a pair of complex-
conjugate eigenvalues of D, f(xo, \) passing through the imaginary axis as A
varies. However, when considering generic one-parameter steady-state bifur-
cations, one does not expect the kernel of D,, f(zo, \g) to be two-dimensional
or even bigger either, as a small perturbation of the family of vector fields
f(z,A) would generically perturb the kernel to a lower dimensional one.
The situation is more complicated for equivariant systems, as the symme-
try might exclude certain spaces to appear as kernels or center subspaces,
thereby making other spaces more ‘likely’.

As it turns out, the correct generalization of a one-dimensional kernel in the
case of a compact Lie-group symmetry, is that of an irreducible subrepre-
sentation. As a one-dimensional space can be characterized by the property
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

Figure 5.1: A network (left) with its fundamental network (right). For convenience,
we have left out additional self-loops representing interior dynamics for all the cells
in both the networks. The network vector fields corresponding to the fundamental
network are exactly the vector fields with a linear monoid-symmetry, for which the
fundamental network is in fact the Cayley graph. The network vector fields for the
graph on the left correspond to those on the right restricted to a linear (synchrony)
subspace. This is reflected in the graphs by the fact that identifying cells 2 and &8
in the right network yields the left one, up to renumbering.

that it does not contain any non-trivial subspaces, so too can an irreducible
subrepresentation be defined by the property that it does not contain any
non-trivial invariant subspaces. One can further generalize this concept to
that of an absolutely irreducible subrepresentation, by imposing the con-
dition that the only symmetry-respecting endomorphisms of the space are
multiples of the identity. It can then be proven that for compact groups a
steady-state bifurcation occurs generically along one absolutely irreducible
subrepresentation of the symmetry. See Proposition 3.2 in Chapter XIII of
19].

When the symmetries only form a monoid, one can define an indecomposable
subrepresentation as an invariant space that cannot be written as the direct
sum of two (non-trivial) invariant subspaces. Such an indecomposable sub-
representation is called absolutely indecomposable if the only symmetry pre-
serving endomorphisms are multiples of the identity, up to nilpotent maps.
It was shown in 20| (Theorem 6.2) that under a certain technical condition
on the representation of the symmetry-monoid, a steady-state bifurcation
occurs generically along one absolutely indecomposable subrepresentation.
In this article we prove the following more general result about generic k-
parameter bifurcations in monoid-symmetric dynamical systems. Note that
any group is a particular example of a monoid. One often calls an abso-
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5.2. INTRODUCTION

lutely indecomposable representation an indecomposable representation of
real type, after the algebra of its endomorphisms. Likewise, there are the
notions of complex type and of quaternionic type. Any (finite-dimensional)
indecomposable representation falls in either of these three classes. Our main
result is the following.

Theorem 5.2.1. Let W be a finite-dimensional representation space of a
monoid X.. Let U C W be an invariant subspace satisfying

r Tu c Cy h Py
U@ DWW . QWEDWE W (521)

Here, the W[, WiC and WH are non-isomorphic indecomposable represen-
tations of real type, complex type and quaternionic type respectively, and the
numbers r;, ¢; and h; denote multiplicities in U. Suppose furthermore that
there exists an invariant subspace U’ such that W = U ® U’. Then gener-
ically a k-parameter family of endomorphisms of W has an element with

generalized kernel isomorphic to U only when k is bigger or equal to
Kyi=ri+-+ry+2c+-+2c,+4hy + - +4hy .

Likewise, generically a k-parameter family of endomorphisms of W has an
element with center subspace isomorphic to U only when k is bigger or equal
to

Cu=[m/2]+ -+ [r/2l+a+ - +et+hi+ - +hy.

Here, [x] means x rounded up to the nearest integer. (It is not hard to see
that if such a U’ does mot exist, then U will not appear as a generalized
kernel or as a center subspace.)

More precisely, let End(W) denote the set of all X-equivariant linear maps
from W to itself. We furthermore denote by Nil(U) the set of elements in
End(W) with generalized kernel isomorphic to U and by Cen(U) the set of
elements in End(W) with center subspace isomorphic to U. Then the set
Nil(U) is the union of a finite set of conjugacy invariant submanifolds of
codimension Ky and higher. Likewise, Cen(U) is the union of a finite set
of conjugacy invariant submanifolds of codimension Cy and higher.
Consequently, when Q C R¥ is some open parameter-space, the set

{f € C=(Q,End(W)) | f(Q)NNil(U) = 0}

is dense in the weak and strong topologies on C'*°(Q, End(W)) whenever
k < Ky. Likeunse, the set

{f € C®(Q, End(W)) | £(Q) N Cen(U) = 0}
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

is dense in the weak and strong topologies on C*°(Q,End(W)) whenever
k < Cy. Moreover, the sets

{f € C*(Q,End(WW)) | £/(Q) NNil(U) # 0}
and
{f € C*(Q,End(W)) | £(2) N Cen(U) # 0}

contain a non-empty open set in C*°(Q, End(W)) for k > Ky and k > Cy,
respectively.

This result will be proven in several steps. In Section [5.4] we will show how
(the technical formulation of) the result follows, provided it holds in the
special case when W = U. In Section [5.5|we then reduce the situation to one
that only involves three families of real algebras, essentially stripping away
the symmetry-monoid itself. As some of the results of this section have value
on their own, we have decided to split this reduction in three separate steps,
and to furthermore elaborate on quite some of the intermediate findings.
Next, Section [5.0] is dedicated to proving Theorem [5.2.1] in the forms of
Theorem and Remark For the proof of Theorem we need
some technical results. These are proven in Sections [5.7] and [5.8f More
precisely, Section [5.7] serves as a short excursion into algebraic geometry
needed to prove a technical result. Section [5.8 then uses this result to count
the dimensions of the set of elements with a vanishing or purely imaginary
spectrum in the three reduced algebras that we obtain in Section [5.5] To
start off, Section [5.3] gives an overview of the results from representation
theory that we will be using.

Despite all sections working towards the single goal of proving Theorem [5.2.1]
it is best to think of this article as consisting of two separate parts. The first
part consists of Sections till and comprises the main discussion. The
second part is Sections and and could be thought of as an appendix
where we treat some of the harder geometrical results (where there is no given
symmetry anymore). Many of the results in the second part are known to
experts, but hard or even impossible to find in the literature. Furthermore,
an in depth study of these topics was needed to generalize some of the results
to for example matrices with quaternion entries. What is more, we believe
some of the results in Section [5.8] constitute meaningful results in geometry.
Whereas little to no knowledge of the geometrical techniques used in these
last two sections is required, a reader interested in only the main result of
this article can simply skip this second part.
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5.3. PRELIMINARIES

5.3 Preliminaries

In this section we present some basic results from the representation theory
of monoids. We furthermore fix the notation that will be used throughout
this article. It should be noted that we put no restrictions on the monoid 3.
In particular, it may be finite or infinite, and it could correspond to a (non-
compact) topological group or Lie-group. It is, however, essential that the
representation space V is finite dimensional. Proofs and additional remarks
can be found in [4] and |20].

Definition 5.3.1. A monoid is a triple (X,e,0), where ¥ is a set, e is an
element of ¥ (called the unit) and o is a map from ¥ x ¥ to ¥ (notation:
xoy € X for z,y € X). This triple has to satisfy the following properties:

1. (xoy)oz=zo(yoz)foral z,y,z€ X
2. eox=xoe=c forall x € X.

Note that a group is a particular instance of a monoid. If one drops the
existence of a unit in the definition of a monoid (and therefore the second
condition), one obtains a semigroup. Note that any semigroup can be made
into a monoid by artificially adding a unit as an extra element to X. The
multiplication o is then expanded to ¥ U {e} by imposing the second condi-
tion in the definition of a monoid.

If V is a finite dimensional vector space over a field K, then we denote
by Matg (V) the space of K-linear maps from V to itself. We will often
drop the subscript K and simply write Mat(V) when the underlying field
is clear. Furthermore, if we have V = R" and K = R then we will write
Mat(R, n) := Matg(R™). Likewise, we write Mat(C, n) := Matc(C™) for the
space of complex matrices. Using this notation, we say that a representation
of the monoid ¥ in the vector space V over K is a map ¢ from 3 to Matg (V)
satisfying:

1. ¢(zoy) = ¢(x)og(y) for all z,y € X, and with multiplication between
elements in Matg (V') understood as composition of operators.

2. (b(e) = IdV

A representation of a semigroup can be defined analogously, by dropping the
second condition. Given such a representation ¢ of a semigroup X, one ob-
tains a representation of the induced monoid X U{e} by setting ¢(e) := Idy .
As we will mostly be interested in those (linear) operators that commute
with all elements of the form ¢(z), results will often not change if one passes
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

from a semigroup to its induced monoid. Likewise, if one has a subset S of a
monoid 7', then one may often pass to the smallest monoid > C T containing
S. In this article a representation will always be over the field R. We also
note in passing that the maps ¢(z) need by no means be invertible.

Given a monoid ¥ and a representation (V, ¢), a linear subspace W C V is
said to be invariant if it holds that ¢(x) maps W into itself for all z € X.
In that case, W becomes a representation space itself via the maps ¢(z)|w .
We say that an invariant space W C V is complementable if there exists an
invariant space U C V such that V =W @ U. It is in general not true that
every invariant subspace is complementable. If we have two representations
(V,¢) and (V, ¢'), then a morphism between these two representations is a
linear map f : V — V' satisfying fog(z) = ¢'(x)o f for allz € X. If f is fur-
thermore invertible, then we call it an isomorphism. Note that in that case,
it follows that f=1o¢/(x) = ¢(x) o f~1, so that f~! is also a morphism. We
call two representations isomorphic if there exists an isomorphism between
them. The space of morphisms between (V,¢) and itself wil be denoted by
End(V) (Note that we suppress ¢ here, as we will often do in (V, ¢) once ¢
is fixed). Some examples of morphisms include the inclusion of (W, ¢(e)|w)
in (V,¢) when W C V is invariant, and the projection of V.= W @ U onto
W when W and U are (complementable) invariant spaces.

An element of End(V') can give rise to a number of invariant spaces. For
example, the image, kernel and more generally the span of the eigenvectors
of a real eigenvalue or pair of complex-conjugate eigenvalues is always an
invariant space. Furthermore, the span of the generalized eigenvectors of an
eigenvalue or pair of complex-conjugate eigenvalues is invariant and is in fact
complementable (by the span of the generalized eigenvectors of other eigen-
values). In particular, we define the generalized kernel of an endomorphism
to be the span of the generalized eigenvectors corresponding to the eigen-
value 0. Likewise, the center subspace of an endomorphism is the span of
the generalized eigenvectors corresponding to all eigenvalues with vanishing
real part. By the foregoing, the generalized kernel and center subspace of
an element of End(V') are examples of complementable invariant subspaces.

Lastly, we say that a nonzero representation V' is indecomposable if it cannot
be written as V = W @ U for non-trivial invariant spaces W and U. Note
that an indecomposable representation may still have non-trivial invariant
subspaces.

The following result states that indecomposable representations can be seen
as the building blocks of other representations.
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5.3. PRELIMINARIES

Theorem 5.3.2 (The Krull-Schmidt theorem). Any (finite-dimensional)
representation space W is isomorphic to the direct sum of a finite number of
indecomposable representations. I.e. we have

We2W,eWed... Wy, (531)

for certain indecomposable representations W1 till Wy. This decomposition
s unique in the following sense. If it also holds that

wWe=w o... W, 5.3.2
1 l

for certain indecomposable representations Wi till W/, then k =1 and we
have that W; = W/ for all i, after renumbering.

The space End(W) has some special properties in the case that W is inde-
composable.

Lemma 5.3.3 (The Fitting lemma). If W is an indecomposable representa-
tion of a monoid X3, then every element A of End(W) is either invertible, or
nilpotent (i.e satisfies A™ = 0 for somen € N). Moreover, the set of nilpotent
elements of End(W) forms an ideal. That is, if we have A, N, N" € End(W)
with N and N’ nilpotent and A € R, then AN, NA, N + N’ and AN are all
nilpotent as well.

Definition 5.3.4. If we write Nil(IW) for the ideal of nilpotent endomor-
phisms of an indecomposable representation W, then it follows that the space
End(W)/Nil(IW) is a real associative division algebra of finite dimension. By
the Frobenius theorem, it follows that End(W)/Nil(W) is isomorphic to ei-
ther R, C or H. Depending on which, we say that W is of real type, complex
type or quaternionic type. It can be shown that isomorphic indecomposable
representations are of the same type. An indecomposable representation
of real type is sometimes also referred to as an absolutely indecomposable
representation.

We will also make use of the following lemma.

Lemma 5.3.5. Let W1 and Wy be indecomposable representations of a
monoid 3, and let f : Wy — Wy and g : Wy — Wy be morphisms. If
the morphism g o f € End(W7) is invertible, then Wi and Wy are isomor-
phic representations. Combining with Lemma [5.3.5, we see that if W1 and
Wy are non-isomorphic, then go f is necessarily nilpotent.
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

5.4 Geometric Reduction

Definition 5.4.1. Let W be a finite dimensional representation space of
the monoid ¥ and let W = U @ U’ be a decomposition of W into invariant
spaces. We denote by

Nil(U7) C End(W) (5.4.1)

those elements of End(WW) whose generalized kernel is isomorphic to U as
representations of ¥. In particular, Nil(WW) simply denotes the nilpotent
elements of End(W). Likewise, we denote by

Cen(U) C End(W) (5.4.2)
those elements of End(W) whose center subspace is isomorphic to U.

A general finite dimensional invariant space W can be written as

1 Tw cy Cy h1 haw
w=@wl. . . pwipwe.. . PpwiPw!.. . Pwl (543)

where the WX K € {R,C, H} are non isomorphic indecomposable repre-
sentations of real (R), complex (C') or quaternionic (H) type. If we are given
a decomposition W = U & V then we may furthermore write

1 T c1 <, h hiy
v=@wl. . . wigw..pwSPpw! .. pwl (544
for some numbers r} < rqy,...h, < hy,. We will hold on to this notation

for the rest of this section. The following result can be considered the core
result of this paper.

Theorem 5.4.2. In End(W), the set Nil(U) is the disjoint union of a finite
set of embedded manifolds having codimension

Ky:=ri+ 471, +2¢ +- 42, +4h] + --- + 4k,

or higher. Exactly one of these manifolds has codimension precisely equal to
this number. Furthermore, these manifolds are conjugacy invariant. That
is, if M denotes any of these manifolds and if A is an element of M and
C € End(W) is invertible, then CAC™! is an element of M as well.
Likewise, the set Cen(U) is the disjoint union of a finite set of conjugacy
imwvariant embedded manifolds having codimension

Cy = [r /2] + -+ [r /2l +c + -+, +h +-- -+ Iy,

or higher. Here, [2] denotes x rounded up to the nearest integer. Exactly
one of these manifolds has codimension precisely equal to Cyy.
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In this section we will prove Theorem [5.4.2] under the assumption that
it holds in the special case when W = U. In the next sections we will then
prove Theorem for U = W. More precisely, the following theorem will
be proven in the next sections.

Theorem 5.4.3. In End(W), the set Nil(W) is the disjoint union of a finite
set of conjugacy invariant embedded manifolds having codimension

Kw=ri+-+ry+2c+-+4+2c, +4hy + -+ 4hy

or higher. Exactly one of these manifolds has codimension precisely equal to
this number.

Likewise, the set Cen(W) is the disjoint union of a finite set of conjugacy
invariant embedded manifolds having codimension

Cw=[r1/2] + -+ [ru/2] +c1+ - F+cy+hi+ - +hy

or higher. Fxactly one of these manifolds has codimension precisely equal to
this number.

In order to prove Theorem [5.4.2] from Theorem [5.4.3] we will need the follow-
ing, technical lemmas. Some of these will also play a major role in Section
Hence, they do not assume the result of Theorem [5.4.3] The first of
these lemmas is well known (see for instance [24]), but included here for
completeness. Furthermore, it demonstrates some techniques that will play
an important role in Section [5.8

Lemma 5.4.4. Let A € Mat(C,n) and B € Mat(C,m) be square matrices
and denote by Mat(C™, C™) the space of compler m x n matrices. Define
the linear map

LA5 :Mat(C",C™) — Mat(C",C™)

(5.4.5)
X+ XA-BX.

The eigenvalues of L g are exactly given by A — p for A an eigenvalue of A
and p an eigenvalue of B. In particular, this map is invertible if and only if
A and B have no eigenvalues in common.

Proof. Denote by {e;}™, a basis such that B is in upper triangular form.
That is, we write

Be; = pie; + Z Bjﬁ'ej R (546)

j<i
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

for (p1, ... pm) the set of eigenvalues of B. Likewise, we denote by {f;}7
a basis such that AT is in upper triangular form:

ATfi=Nfi+ ) AT, (5.4.7)

7<i

for (A1,...\,) the set of eigenvalues of AT. Here, AT denotes the entry-
wise transpose of A. In other words, we have (AT);; = A;;, so that the
eigenvalues of AT are those of A. We will first show that the set {e; ij Yij
is a basis for the linear space Mat(C™,C™). By looking at the dimension
of Mat(C™, C™), this statement holds if and only if the e; fJT are linearly
independent over C. To this end, let us write

ZZ aij(eifj) =0, (5.4.8)

for a;; € C. Let N € Mat(C,n) be a matrix satisfying ffNf; = 6,
(for example by setting N := CTC, where C' maps the basis {f; }i_q to the
standard basis of C™). Multiplying equation (5.4.8]) by N f, for a given value
of k yields

m

ZZQH eif; "N = ZZaivjei(ijka) = Zai,kei =0. (54.9)
i=1

=1 j=1 i=1 j=1

By linear independence of the basis {e;}I"; we see that a;, = 0 for all i.
Since k was chosen arbitrary, it follows that ai = 0 for all 4 and k. This
proves that {eiij}M is a basis for Mat(C™,C™).

Next, we order the set {e; f]T }i,; lexicographically. That is, we say that
eiij > erfiL if i > k or if it holds that i = k and j > [. It follows that

Lapleif])=(eif/ VA= Bleif]) =ei(A"f;)" — (Bes)f)  (5.4.10)
=ei(A\jfj + ZA{,jfk)T — (pies + ZBz,iel)fJ
k<j 1<i
()‘ _/-M elf +ZA esz ZBl,i(elf]T)
k<j I<i
= (N — i) (e f]T ) + {lexicographically lower order terms} .
We see that, with respect to the ordered basis {eiij}i,j, the matrix of L4 p

is in upper diagonal form, with diagonal entries {(\; — ;) }: ;. This proves
the statement. O
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5.4. GEOMETRIC REDUCTION

The following lemma will be key in proving Theorem [5.4.2] from Theorem
It can be seen as an extension of Lemma 6.3 from [20].

Lemma 5.4.5. Let L € End(W) be an equivariant linear map and denote
by Z C C any subset of the complex numbers. (In this article, Z will either
be {0} or the imaginary azis.) Write W = Wy & Wye for the decomposition
of W into the space spanned by the generalized eigenvectors corresponding to
eigenvalues of L in Z (W) and in the complement of Z (Wze). Note that
both Wz and Wy are invariant spaces for the symmetry, as well as for L.
That is, L is in block diagonal form corresponding to this decomposition of
W. We write L11 := L|w, and La g := L|w,. for the two blocks.

Then, there exist an open neighborhood S C End(W) containing L and
smooth maps M : S — End(W), By : S — End(Wgz) and By : S —
End(Wze) such that the following holds.

e M(L)=1d, Bi(L) = Ly,1, B2(L) = La.
o M(X) is invertible for all X € S.

e B and By are submersions.

e For all X € S it holds that

M(X)XM(X)™" = (BléX) 32(())()) (5.4.11)

corresponding to the decomposition W = Wy, @& Wye.

Proof. Let M be the linear space of elements m € End(W) of the form

m< 0 m01*2> (5.4.12)

ma1

with respect to the decomposition W = Wy @ Wz.. Define the map
U : M x End(W) — M given by

_ 0 (exp(m) X exp(~m)):,
m, X) = <<exp(m>Xexp<—m>>2,1 0 ) - (54.13)

Here, exp(m) denotes the matrix exponential of m, defined by the usual
power series. Note that exp(m) is again an equivariant map, as the set of
equivariant maps is closed in the set of all linear maps. We will apply the
implicit function theorem to the map W. First of all, we have ¥(0,L) = 0,
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CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

as L is block diagonal with respect to the given decomposition. Secondly,
the derivative at (0, L) in the direction of V' € M is given by

D, ¥ (0, L)V = ([M 2]2 ) v, g]“> (5.4.14)

)

_ 0 VipLoo — L11Vi2
VoaLi1 — LaoVay 0

—_ 0 £L2‘27L1,1(‘/172)
£L1‘17L2,2 (‘/271) 0 ’

where [V, L] denotes the commutator between the two operators. Looking
at the eigenvalues of L;; and L3, we see that the difference between an
eigenvalue of the first and an eigenvalue of the second can never be 0. Hence,
it follows from Lemma [5.4.4 that the operators Ly, , r,, and Lr, , 1, , are
bijections. As they moreover send equivariant maps to equivariant maps,
we conclude that they are bijective on the set of equivariant maps. By
the implicit function theorem, it therefore holds that there exists a smooth
map m from some open neighborhood S C End(W) containing L to M
such that ¥(m(X),X) = 0. It furthermore holds that m(L) = 0. By
setting M (X) := exp(m(X)), we get a map satisfying M (L) = Id an d with
M(X) invertible for all X € S. By construction, M (X)X (X) is of
block diagonal form. Finally, we set By(X) := (M(X)XM(X) 1)1, and
BQ(X) = (M(X)XM(X>_1)2,2, so that Bl (L) = L171 and BQ(L) == L272.

It remains to show that these two smooth maps are in fact submersions. For
this, it is enough to show that their derivatives have maximal rank at L. The
lemma is then proven by choosing S small enough so that the derivatives
of By and B, have maximal rank throughout. The derivative of the map
X — M(X)XM(X)™ ! at L in the direction of V € End(W) is given by

d

dl_ M(L+tV)(L+tV)M(L+tV)™" (5.415)
t=0
- % . Id4+m(L+tV)+...)(L+tV)Ad—m(L+tV) +...)
=(Dm(L)V)L — L(Dm(L)V)+V
=[Dm(L)V, L]+ V.

As m(X) is an element of M for all X € S and as L is block diagonal,
we see that [Dm(L)V,L]11 = 0 and [Dm(L)V,L]a2 = 0. It follows that
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DB (L)V = Vi1 and DBy(L)V = Va2, which are indeed of full rank. This
proves the lemma. O

Another, simple lemma that we will use is the following.

Lemma 5.4.6. Let A, B € End(W) be two endomorphisms that are conju-
gate by an equivariant map. That is, there exists an invertible M € End(W)
such that B = MAM™1. Asin Lemma denote by Z C C any subset of
the complex numbers. Let Wz (X) be the span of the generalized eigenvectors
corresponding to eigenvalues of X € End(W) that lie in Z. Likewise, denote
by Wze(X) the span of the generalized eigenvectors corresponding to eigen-
values of X nmot in Z. Then it holds that Wz(A) and Wz(B) are isomorphic
representations, and likewise for Wze(A) and Wz<(B). More precisely, M
restricts to isomorphisms My := M|y, ay: Wz(A) — Wz(B) and M :=
Mlw,.ay: Wze(A) — Wze(B), and we have Blyw,(p)= M1A|WZ(A)M
and Blw . (p)= M2Alw . a)Ms "

Proof. It can directly be verified that if v € W is a generalized eigen-
vector of A for an eigenvalue A € C, then Mwv is a generalized eigen-
vector of B = MAM™" for the same eigenvalue A\. Hence we see that
Wz(B) = MWz(A) and Wze(B) = MW_zc(A). In particular, as we have
W = Wz(A) @ Wze(A) = Wz(B) ® Wge(B), we see that we may write
M = M;® M, for My := M|WZ(A): Wz(A) — Wz(B) and My := M‘ch(A):
Wze(A) = Wge(B). My and My are furthermore both injective, and there-
fore both isomorphisms. Now let v € Wz(B) be given, then

My Al ayMy " (v) = My Alw, 4y (M7 (v) + M3 (0)) (5.4.16)
= MlA‘WZ(A)Mil(U) = MlAMil(’U)
= MAM '(v) = B(v).

Therefore, B|WZ(B)* M Alw,ayM; . One likewise finds that Bly,. p)=
M3 Alw,.ayMy . This proves the lemma. O

We are now in a position to prove Theorem [5.4.2] assuming Theorem [5.4.3]

Proof that Theorem [5.4.3 implies Theorem[5.].9 We fix a decomposition
W =U @ U’. By Theorem we may write

End(U) D Nil(U HM (5.4.17)

End(U) D Cen(U HNZ, (5.4.18)
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where the M; and N; are conjugacy invariant, embedded manifolds.

End(W) we define the sets M/, consisting of those endomorphisms A with
generalized kernel Wy(A) isomorphic to U, for which there exists an isomor-
phism ¢ : Wy(A) — U such that ¢A|WU(A)¢_1 € M;. Analogously, we define

N/ to be given by

N} :={A€End(W)|3¢: W.(A) = U iso, s.t. pAlw,ay¢ ' € Ni},

(5.4.19)

where W.(A) denotes the center subspace of A.

Note that if A is in some M/ (or N}), then its generalized kernel (or center
subspace) is isomorphic to U. Conversely, if the generalized kernel of A is
isomorphic to U, then there exists an isomorphism ¢ : Wy(A) — U. The
map ¢A|w,4)¢~' € End(U) is nilpotent, and hence contained in some M;.
We conclude that A € M/ for some 1 < i < k. Likewise, if A has its center
subspace isomorphic to U, then A € Ni’ for some 1 < ¢ <. We conclude
that the union of the M/ is exactly all elements in End(W') with generalized
kernel isomorphic to U, and likewise for the center subspace case and the

N]/.
First, we show that the definitions of M/ and N are independent of the choice

of isomorphism ¢. If ¢A|WO(A)¢_1 is an element of M;, and if ¢ : Wy(A) - U

is any other isomorphism, then

PAlwoay " = 0o G Alwyay0 oy (5.4.20)
= (Yo~ )PAlwyayd (o). (5.4.21)

As 9¢~! € End(U) and as M; is conjugacy invariant, we conclude that

wA|WO(A)z/J_1 € M,; as well. The same proof works for the N/. This
shows that the sets M/ are in fact disjoint, and likewise for the N/. For,
if qﬁA\WO(A)qS’l € M; and 1/1A|WO(A)1/)’1 € M; for some isomorphisms ¢ and
1, then by the foregoing, ¢A|W0(A)¢71 € M;. As the M; are disjoint, we
conclude that ¢ = j. The same reasoning works to show that the N/ are

disjoint sets.

Next, we show that none of the sets M/ is empty. To this end, pick an

element B € M;. It follows that the element

B 0
A= (0 IdU/) € End(U & U’) = End(W) (5.4.22)

belongs to M/ (by choosing ¢ = Idy). A similar proof shows that none of

the N/ is empty.
It also holds that each M/ and N is conjugacy invariant. For, if A is an
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element of M/ and B € End(W) is conjugate to A, then by Lemma
there exists an isomorphism M; : Wy(A) — Wy(B) such that
M1A|WO(A)Mf1 = Blw, (). By assumption, there exists an isomorphism
¢ : Wo(A) — U for which ¢A|w,ay¢p~" € M;. It follows that oMt
Wo(B) — U is an isomorphism satisfying (¢M; ") Blw, ) (¢M; ')~ € M;.
This proves that B € M/ as well. The proof is analogous for the N/

It remains to show that the M/ and N/ are embedded manifolds satisfying
the proposed conditions on their dimensions. We will in fact show that every
M has the same codimension as its counterpart M;, and likewise for the N/
with respect to the IV;.

To this end, let L € M/ be given. We will set Wy := Wy(L) and write
Wy = WS(L) for the span of the generalized eigenvectors of L correspond-
ing to its non-zero eigenvalues. It follows that there exists an isomorphism
¢ : Wy — U such that ¢L|w,¢~! € M;. We fix such an isomorphism ¢. By
Lemma there exist an open neighborhood S C End(W) containing L
and smooth submersions B; : S — End(Wy), Bz : S — End(W§) such that
every element A € S is conjugate to By(A) & B2(A) € End(Wy @ W) =
End(W). It furthermore holds that Bi(L) = L|w, and Ba(L) = L|weg.
As By(L) is invertible, there exists an open neighborhood 7' C End(W})
containing Bo(L) of only invertible linear operators. By redefining S as
SN By (T), we may therefore assume By(A) to be invertible for all A € S.

We claim that M/ N S is exactly the set of all elements A € S for which
#B1(A)p~t € M;. Because A € S is conjugate to Bi(A) ® Ba(A), it follows
from the conjugacy invariance of M/ that A is an element of M/ if and only
if B1(A) @ B2(A) is. Therefore, let us first assume Bj(A) & By(A4) is an
element of M/. It follows that the generalized kernel of Bi(A) & Bz(A)
is isomorphic to U, and therefore to Wy. As By(A) is furthermore as-
sumed to be invertible, we see that the generalized kernel of By (A4) @ Ba(A)
is necessarily contained in W,. Hence, we conclude equality of the two
spaces, i.e. Wy(B1(A) @ B2(A)) = Wy. In particular, we see that (B1(A) @
BQ(A))|W0(Bl(A)@B2(A)): Bi(A). As B1(A) ® B2(A) € Mi/? it holds that
¥B1(A)yp~! € M; for some isomorphism 1 : Wy — U. By the first part of
the proof, we also get ¢B1(A)¢~! € M;.

Conversely, if A € S is such that ¢B;(A)¢~! € M;, then the generalized ker-
nel of By (A)®Bz(A) contains Wy. As By(A) is invertible, we see that exactly
Wo(B1(A) ® Bz(A)) = Wo. From ¢(B1(A) @ B2 (A))|w,¢~! = ¢Bi(A)d~! €
M; we conclude that By (A) @ B2(A) € M/, and therefore A € M.

From this we see that M/ NS = By (¢~ 'M;¢). In particular, as By is a
submersion, M/ is an embedded submanifold of End(W) of the same codi-
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mension as M;.

The case for the center subspace is completely analogous. For a given

L € N/, choose an open neighborhood S on which any element A is conjugate
to B1(A) @ Ba(A). Here, the direct sum is with respect to the decomposition
W =W, (L)®eW2 (L), where W2 (L) corresponds to all eigenvalues away from
the imaginary axis. Analogous to the case of the M/, we want to assume
that for all A € S, B3(A) has only eigenvalues away from the imaginary axis.
This can be assumed if it holds that the set of elements in End(W?) with
no purely imaginary eigenvalues is an open set. However, note that there
exists a continuous inclusion from End(W?) into Mat(C,n) for some n. In
Mat(C,n), the set of matrices with no purely imaginary eigenvalues is indeed
an open set. See for example |13 p. 118] or see [1] for a short proof using
Rouché’s theorem. Therefore, the set of elements in End(W?) with no purely
imaginary eigenvalues is indeed open. Tt follows that N/NS = B *(¢~'N;¢),
where ¢ : W.(L) — U is any (fixed) isomorphism. Therefore each N/ is an
embedded submanifold of the same codimension as IN;. This proves the
theorem. O

5.5 Algebraic Reduction

The proof of Theorem [5.4.3] consists of two steps. First, we reduce the prob-
lem from one involving End(WW) to one involving certain matrix algebras
that are easier to analyse. The most important aspect of this reduction is
the fact that it does not (in essence) change the spectrum of the endomor-
phisms. The second step is to then construct the manifolds in these reduced
spaces that contain all matrices with a vanishing or purely imaginary spec-
trum, and to count their dimensions. This section is dedicated to the first
step, whereas Sections and will cover the second. In Section [5.6] we
present the proof of Theorem [5.4.3] using the results from this section and
from Sections 5.7 and

The first step comes down to three consecutive reductions. In the first reduc-
tion, we isolate an ideal in End(W) whose cosets have a constant spectrum.
That is, the algebraic multiplicity of the eigenvalues of an endomorphism
does not change when one adds an element of this ideal. We furthermore
identify a full set of representatives for the cosets of this ideal. In the second
reduction, we show that choosing different generators for the real, complex
and quaternionic structure does not change the eigenvalues of the endomor-
phism, and has a predictable effect on the algebraic multiplicities. In the
third step, we further reduce the problem to one involving three families of
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algebras. This last reduction forgets about some of the eigenvalues. How-
ever, the property of having a vanishing or purely imaginary spectrum is still
respected. Throughout this section, we have chosen to elaborate on quite
some intermediate results, as we believe they have significance outside of the
proof of Theorem as well.

5.5.1 The First Reduction

In this part, we identify an ideal in End(W) whose cosets have a constant
spectrum. We furthermore identify a suitable set of representatives for these
cosets. The main tool in this subsection will be the following:

Definition 5.5.1. Writing

T1 Ty cy Cy h1 hw
w=@wl. . pwigwr.. . pwipw.. .pwl, (551

we fix an isomorphism between W and the right hand side of equation .
We may then denote any element of End(W) as a matrix with entries formed
by equivariant maps between two (isomorphic or non-isomorphic) indecom-
posable components of (5.5.1). We denote by J C End(W) the set of all
elements for which there are no isomorphisms among the entries of this ma-
trix. Equivalently, J consists of those endomorphisms for which there are
only nilpotent entries between isomorphic components, alongside entries be-
tween non-isomorphic components. We will later see in Corollary that
this definition is independent of the chosen isomorphism between the right
hand side and the left hand side of equation .

Example 5.5.2. Let W be given by
w=wlfewlow?, (5.5.2)

where W and W are (necessarily non-isomorphic) indecomposable repre-
sentations of real and complex type, respectively. An element A € End(W)
may then be written with respect to this decomposition as

ald +N171 bld +N112 A1’3
A=1cld —|—N271 dld +N272 A273 R (553)
A371 A372 BId +f]+ N373

for a,b,... f € R. Here, N;; denotes a nilpotent map between isomorphic
representations and I € End(W{) is an isomorphism such that {[Id],[I]} C
End(WE)/Nil(W) generates a complex structure. It follows that A is an
element of J ifand only ifa=b=---= f =0. A
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Proposition 5.5.3. The set J is a (two-sided) ideal in the algebra End(W).

Proof. Recall that Nil(W[) is an ideal in End(WX) for every indecompos-
able representation WX, In particular, Nil(W) is a linear subspace of the
vector space End(WX). From this it follows that 7 is a linear subspace of
End(W).

To prove that it is an ideal, let us denote the indecomposable compo-
nents of W (i.e. W{ (r; times) up to WX (h,, times)) by Wy,... W}, for
k=ri+...7ry, +c1+...c, + h1 + ... hy. Let us furthermore denote the
entries of A € End(W) and X € J by A = (4,,) and X = (X; ;) with
respect to this decomposition of W. If p and ¢ are indices such that W, is
isomorphic to W, then we have

k
(AX)p,q = ZAp,le,q = Z ApiXiq+ N . (5.5.4)
=1 leP(p)

Here P(p) denotes the set of indices of representations isomorphic to W, and
N is some nilpotent map. Now, because X is an element of 7, we know that
X ¢ is an element of Nil(W,,) for all [ € P(p). Using the fact that Nil(WW},) is
an ideal in End(W),) we conclude that the entire term (AX), , is nilpotent.
Since this holds for all p and ¢ such that W, is isomorphic to W, we see
that AX € J. This proves that J is a left ideal in End(W). The proof that
it is a right ideal is similar, which concludes the proof. O

Corollary 5.5.4. The ideal J is independent of the decomposition of W
into indecomposable representations.

Proof. Let
do,di W > W1 d...0 W,

denote two identifications of W with the sum of indecomposable representa-
tions Wy till Wy. We will furthermore denote by

J CEnd(W; @...0 W)

the ideal of endomorphisms without isomorphisms among the entries. We
have to show that

do ' J'do = dy " T'dy . (5.5.5)
However, from the fact that 7’ is an ideal it follows that

(didy 1) T (dod; ) € T (5.5.6)
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and
(dod; 1T (dvdy ') ¢ T (5.5.7)
This shows that equation ([5.5.5|) indeed holds, which concludes the proof. [

Proposition 5.5.5. Let A € End(W) and let X € J. The set of eigenvalues
of A, counted with algebraic multiplicity, is the same as that of A+ X. In
other words, the map assigning the set of eigenvalues to an endomorphism
descends to a map on End(W)/J. In particular, we have that J C Nil(W).

To prove Proposition[5.5.5| we need the following useful lemma. This result is
known to experts, but included here for completeness and for its significance
throughout this section.

Lemma 5.5.6. Let A, B € Mat(C, n) (or in particular Mat(R,n)) be two n
times n matrices such that the following identities hold
tr(A) = tr(B)

tr(A?) = tr(B?) 555

tr(A™) : tr(B"),

then the set of eigenvalues of A and B, counted with algebraic multiplicity,
are the same.

Proof. Let (A1,...A,) and (p1, . . . 4y,) denote the eigenvalues of A and B, re-
spectively (taking into account algebraic multiplicity). We see that tr(A*) =
pr(A1...A,) for all k > 0, where py, is the power sum symmetric polynomial
given by

Py, . xp) =ah 4k (5.5.9)

It is known that these polynomials form a basis of the symmetric polyno-
mials. In other words, every symmetric polynomial in n variables can be
written as a polynomial expression of the functions pg until p,. (Note that
po :=n). See [22, p. 2-3]. In particular, the coefficients of the polynomial

(2= A1)z — A2) ... (z — An) (5.5.10)

are symmetric polynomials in the variables A; till A,. It follows that they
can be expressed in the symmetric polynomials pg till p,. Therefore, they
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are determined by the values tr(A*) = pi(A1...\,) for k < n. We conclude
that the polynomial ([5.5.10)) is equal to the polynomial

(x —p)(x — p2) ... (T — pn) (5.5.11)
and from this we see that the roots (A1,...A,) and (u1,...4,) coincide.
This proves the lemma. [

Proof of Proposition[5.5.5 We first note that tr(X) = 0 for all X € J.
This follows from the fact that X has only nilpotent maps as its diagonal
entries. In particular, we see that tr(A4) = tr(A + X) for all A € End(W).
Furthermore, from the fact that J is an ideal in End(W) it follows that
(A+ X)™ = A™ + X,,, for some X, € J and for all m > 0. From this
we conclude that tr((A + X)™) = tr(4™) for all m > 0. The claim of
the theorem now follows from applying Lemma [5.5.6)to A and A + X. In
particular, we conclude that X has only 0 as an eigenvalue and is hence
nilpotent. O

Before we move on, it will be convenient to introduce a full set of rep-
resentatives for the classes of End(W)/J. To this end, let W, be an in-
decomposable representation. If W; is of quaternionic type, we fix iso-
morphisms {Idi,Ii,Ji,Ki} C End(Wz) such that {[Idl],[lz],[JL],[Kz}} C
End(W;)/Nil(W;) generates the quaternionic structure on End(W;)/Nil(W;).
Likewise we will have that [Id;] € End(W;)/Nil(W;) generates the real
structure on End(W;)/Nil(W;) if W; is of real type and that {[Id;], [I;]} C
End(W;)/Nil(W;) generates the complex structure on End(W;)/Nil(W;) if
W; is of complex type. We note in passing that Id; € End(W;) may be
chosen to equal the identity operator Idy,. As a matter of fact, because
Id%/v,; = Idw, and because there is only one non-zero idempotent element in
any division ring, we see that necessarily Id; = Idw, + /N for any nilpotent
element N. Therefore, we will always choose Id; to be Idy,.

Given this choice of generators, we will construct out of an endomorphism
A € End(W) an endomorphism D4 € End(W) that only differs from A by
an element of 7. To this end, we write

hw

r Tu c Cy h
Wg@Wﬁ...@Wf@Wf...@Wf@Wﬁ.. wH
k
:@VV?7
=1

fork=ri+...ry+c1+...c,+h1+... hy, and where each W; is equal to one
of the VVjK7 K € {R,C,H} from the first line of (5.5.12)). If p,q € {1....k}

(5.5.12)
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are such that W, = Wy, then A4, , can be written uniquely as

ald, +N if W), is of real type
Apq=1< ald,+0I, + N if W, is of complex type
ald, +bl, + cJ, + dK, + N if W), is of quaternionic type.

(5.5.13)

Here, a,b,c,d € R and N € End(W,) is a nilpotent endomorphism. (Note
that Id, = Id,, I, = I; and so on, as we assume W), = W,. In other words,
if some of the W; in equation are the same, then they are given the
same generators for the division algebra). We then define (D), 4 by simply
removing the nilpotent terms:

ald, if W), is of real type
(Da)p,q =14 ald,+bl, if W), is of complex type
ald, +bl, + cJ, + dK, if W, is of quaternionic type.

(5.5.14)
Finally, for p and ¢ such that W, and W, are non-isomorphic, we set
(Da)p,q :=0. (5.5.15)

As a result, D4 is a block-diagonal endomorphism, where the blocks corre-
spond to isomorphic representations (sometimes referred to as the isotypical
components of the representation). By construction, we see that A and D4
differ only by an element of 7. What is more, if A and B in End(WW) are in
the same coset with respect to J, then the real numbers a, b, ¢ and d as in
equation will have to be the same. From this we see that necessarily
Dy = Dp. We conclude that the elements D4 for A € End(W) form a full
set of representatives for the cosets of 7.

Example 5.5.7. As in Example let W be given by
wW=wlfaewlowf, (5.5.16)

where Wi and W are indecomposable representations of real and complex
type, respectively. An element A € End(W) is given with respect to this
decomposition as

ald+Ny; bId+Nis A3
A= CId+N271 dld +N2,2 A273 . (5517)
A371 A372 eld +fI + N373
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It follows that D 4 is the block diagonal matrix

ald bld 0
Da=|ecld dla o |. (5.5.18)
0 0 eld+fI

A

As A and D, differ by an element of 7, it follows from Proposition[5.5.5

that they have the same eigenvalues, counted with algebraic multiplicity.
Furthermore, as the set of endomorphisms {D4 | A € End(W)} forms a
complete set of representatives for the equivalence classes of End(W)/J, we
see that we can define any map on End(W)/J by specifying its value on the
elements D 4.
Note that Do +Dp = Dayp and - Dy = D,,.4 for all A, B € End(WV) and
1 € R. It does however not hold that DsDpg = Dap. Indeed, the element
D aDg is again a block diagonal endomorphism, but it may have nilpotent
terms among its entries. To realize this, we note that for example the identity
[1]? = —[1d] for [I] € End(WF)/Nil(WF) does not imply I? = —1Id, but
rather 1?2 = —Id +N for some nilpotent term N. This seems to suggest that
D aDpg and D 4p differ only by an element of 7, which the following theorem
confirms.

Proposition 5.5.8. Let {A;}™, C End(W) be any finite set of endomor-
phisms, then the following holds:

m

[[Da - Dirn 4y €T (5.5.19)

=1

Proof. Given A € End(W), we denote by A + J the set of endomorphisms
that differ from A by an element of J. We have already seen that D4, €
A;+ T for all i € {1,...m}. Consequently, it follows that

m m

[[Da e]J(Ai+9) c (H Ai) +J. (5.5.20)
i=1 i=1 i=1
Since it also holds that
D, a) € (H Ai) +J, (5.5.21)
i=1

we see that [[/~; D4, and D(Hf’il A) indeed differ by an element of 7. This
proves the claim. O
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5.5.2 The Second Reduction

Our goal is to define a map from End(W)/J to a space where it is easier
to identify exactly those matrices that have a specified condition on their
eigenvalues. Since the set {D4 | A € End(W)} forms a complete set of
representatives for the equivalence classes of End(W)/J, we may define
this map by giving its value on endomorphisms of the form D,4. Since
D4 is a block diagonal matrix, where the blocks correspond to isomorphic
indecomposable representations, we will first focus our attention on the case
that W is the direct sum of isomorphic indecomposable representations.
The key point will be that we may replace I, J and K by any other real
representation of the quaternionic (or complex, or real) numbers, without
losing information about the eigenvalues. More specifically, we make the
following construction.

Definition 5.5.9. Let Q) := {I J, K} C Mat(R, m) denote any three m xm
matrices such that RId,, ®RI®RJGRK has a quaternionic structure. That
is, we have the identities

P=7F=K=I1JK=-1d,, . (5.5.22)

Given an element

h;
A € End (EB Wﬁ) ,
we may write

Apg = ap,qId+bp gl + ¢y +dpgK + Np g, (5.5.23)

for p,q € {1,...h;} and where 1d, I, J, K € End(W/T) generate the quater-
nionic structure on End(W)/Nil(W). Here we furthermore have that
Ap.gs bpqs Cp.q and d,, are real numbers and that N,, € End(WH) is a
nilpotent endomorphism. From A, we can now construct the element

hi
AQ € Mat (@ Rm> ,
given by
(AQ)p.q = ap.g I +by oI 4 cp g +dp K . (5.5.24)

Similarly, if

ki
A € End (@ W{f) , Ke{R,C}
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has components of complex or real type, we can define Ag corresponding to
some real representation () of the complex or real numbers. For example,
given a matrix I C Mat(R,m) satisfying I? = —Id,,,, and writing

ai1 Id +b171[+N1’1 al,e; Id +b1’ciI+N1’Ci
A = : '.. : , (5.525)
e, 1 Id+be, 1L + Ne, 1o o aey e Id 4be; oL + Ney e,
for an element
A€ End (@ Wf) ,
we get
a1 1d,, —|—()1,1I~ e Q1 1d,, —|—b1,cil~
Ag = : : (5.5.26)
Ge;,1 Idm +bci,1j et Oy Idm +bc,;,c7;j

The following theorem relates the eigenvalues of A and Ag.

Proposition 5.5.10. Let n be the dimension of WX and let Q C Mat(R, m)
be a representation of the division algebra K by real m x m matrices. Then,
a complex number X is an eigenvalue of A if and only it is an eigenvalue
of the matriz Ag. Furthermore, if we denote the algebraic multiplicity of A
in A by my and its algebraic multiplicity in Ag by m), then these numbers
satisfy

my-m=m\-n (5.5.27)
In order to prove Proposition [5.5.10| we will need the following useful lemma.

Lemma 5.5.11. Let U and V be two (real or complex) finite dimensional
vector spaces of the same dimension, and let A C Mat(U,U) and B C
Mat(V, V') be two sub-algebras of the algebras of linear operators. Suppose
furthermore that ¢ : A — B is a map satisfying

. w(AlAg) = w(Al)w(AQ) fOT’ all Al,AQ eA ,
o tr(1p(A)) =tr(A) forall Ac A .

Then, A and v¥(A) have the same eigenvalues, counted with algebraic multi-
plicity.
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Proof. From the properties of 1 it follows that
tr((A)") = tr(B(A™)) = tr(A"), (5.5.28)

for all n > 0 and A € A. Note furthermore that tr(A°) = dim(U) =
dim(V) = tr(y(A)?). Tt follows from Lemma that the eigenvalues of
A and 9 (A), counted with algebraic multiplicity, coincide. This proves the
lemma. 0

Proof of Proposition[5.5.10, From the operator

ki
A€ End (@ Wf)
we may construct the operator
ki
Id,, ®A € Mat (Rm ® Wff) :

Note that a value A € C is an eigenvalue of A with algebraic multiplicity
my, if and only if it is an eigenvalue of Id,, ® A with algebraic multiplicity
my - m. Likewise, for

ki
Ag € Mat (EB Rm>
we may construct
ki
Id, ®Ag € Mat (R” ® ]Rm> ,

and a value X € C is an eigenvalue of Ag with algebraic multiplicity m/, if
and only if it is an eigenvalue of Id,, ® Ag with algebraic multiplicity m/, - n.
Our aim is to apply Lemma [5.5.11| to the map

Ve {Idm ®A| A€ End <@ Wff) } C Mat <Rm *P Wf)
- {Idn ®B | B € Mat <€BR’”> } C Mat (R” ® @Rm>

Id,, ®A > 1d, ® Ag

(5.5.29)
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Note that by construction we have

k‘i ki
dim (Rm 2P W{‘) = dim (R" ® @Rm> , (5.5.30)

both being equal to k; - m - n.

The first thing to show is that

Yo (Idy, ©A - 1d,, ®B) = g (Idy, ®A) - o (1d,, @B)

k’.
- 5.5.31
for all A, B € End (@ Wf) : ( )
To this end, let us write
Ai’j = a;,j,0 Id +ai’j}1l + ai’jng + ai’j’gK + N;j{j s (5532)
and
BiJ‘ = bi,j70 Id +bi7j71] =+ bz’J’,gJ + bi7j,3K =+ ij R (5533)
where the terms N;f‘j and ij are nilpotent. We see that
ki
(AB)ij = (aisold+aiiil +aiiod + airsK + Njj)
=1 (5.5.34)

< (brjoId +by g I + by jod + bjsK + NJ)
= Cigold+eijil +cijod +ci sl + Nij,
for a nilpotent term NN; ; and where the coeflicients c; ;1 are determined by

the regular quaternionic (or real, or complex) multiplication. That is, we
have

kl

;(ai,z,o + ai,lﬂ + ai,l,zj + ai,l,Bif)(bl,j,O + bz,j,ﬂ + bl,j,25 + bl,j,3]~f) (5.5.35)

=Ci,j,0 + Cij1t+ Cij2j + Cij sk

in H = span{1,4,j, k}. (We use tildes to distinguish from indices.) It follows
that

([AB]Q)i; = cijoldm +cijal + cijod + ¢ijsK . (5.5.36)
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On the other hand, we see that

(AQ)ij = aijoldn, +ai,j71[~ + ai,j,2j + ai,j,af(, (5.5.37)
and

(BQ)i; = bijo Idm +b;jal +bijod +bij 3K, (5.5.38)
from which it follows that

(AgBg)ij = Cijoldm +cijil +cijod +cijaK . (5.5.39)

Comparing expressions (5.5.36) and (5.5.39) we see that (AB)g = AgByg.
From this it follows that Id,, ®(AB)q = Id,, ®(AgBg) and hence that in-
deed ¥ (Id,;, ®A - 1d;, ®B) = ¢y (Id;, ®A) - 9y (1, @ B).

Finally, we have to show that tr(Id,, ®A) = tr(¢g(Id,, ®A)). For this, let
S € Mat(R, s) be any real s x s matrix satisfying S? = —Ids +N for some
nilpotent matrix N € Mat(RR, s) (possibly the zero matrix). It follows that
the eigenvalues of S satisfy the equation A> = —1 and are hence all equal to
i or —i. As the matrix S is real, it follows that the algebraic multiplicity of
i is the same as that of —i, and we conclude that necessarily tr(S) = 0. In
particular, we see that

tr(I) =tr(J) = tr(K) = tr() = tr(J) = tr(K) =0. (5.5.40)

Using this, we calculate the trace of A as

k,; k)i ki
tr(A) =Y tr(Ay) =Y tr(aeldys) =n-> an. (5.5.41)
=1 =1 =1

It follows that

kq
tr(Id, ®A) = mn - Z aio - (5.5.42)
1=1
Likewise, we argue that
tr(Ag) = Y _tr(anoldm) =m- > ai, (5.5.43)
1=1 =1
and hence that
ki
tr(Id, ®Aq) =mn- Y _ario. (5.5.44)
1=1
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We conclude that indeed tr(ld,, ®A4) = tr(¢g(Id,;, ®A)). From Lemma
5.5.11| we now see that the numbers my and m are indeed related by the
identity my - m = m/, - n. This proves the theorem. O

Remark 5.5.12. The matrix Ag can be seen as an element of Mat(R, k;) ®
Mat(R,m). It will often be convenient to use the matrix

A? € Mat(R, m)@Mat (R, k;) instead though, which is simply Ag conjugated
by the natural braiding isomorphism

B:RF @ R™ - R™ @ R* . (5.5.45)
In particular Ag and A€ have the same eigenvalues, counted with algebraic
multiplicity. A
Definition 5.5.13. Let @Q be a particular choice of real matrices representing
the division algebra End(W[)/Nil(WX). We denote by Rg, C,g and ’H,g
the linear space of all matrices A9 for A € End (@k’ wk ) when WX is of

(2 2

real, complex and quaternionic type, respectively.

We will now make a particular choice for the representation @ of the division
algebra K. If K = R then we will represent 1 € R simply by Id; € Mat(R, 1).
For K = C we will choose Idy € Mat(R, 2) and

I:= <_01 (1)> € Mat(R,2). (5.5.46)

For K = H we choose Id4 € Mat(R, 4) and

0 1 0 0O

~ -1 0 0 O

I := 0 00 -1l (5.5.47)
0 01 0
0 0 1 0

= 0 0 0 1

J = 1 0 0 0 (5.5.48)
0 -1 0 0

and

0 0 0 1

~ 0 0 -1 0

K = 01 0 ol (5.5.49)
-1 0 0 O
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all in Mat(R, 4). It is easily verified that [2 = J? = K2 = [JK = —1d,.
With this specific choice of @, we get the following algebras.

RY = Mat(R, n)

9 — {(_AB i) . A, B e Mat(R, n)}

A B C D . (5.5.50)
HO — :g é *f _C;B, A,B,C, D € Mat(R, n)

-D -C B A

We will sometimes write K% to denote one of these algebras when the type
(real, complex or quaternionic) is clear. We furthermore define maps

ki
Q K Q
:End wE | 5Kk
Vi, D <EB i ) ki (5.5.51)
A A9

for K € {R,C,H}. (Here, ICkQ denotes Rg when K = R, Cg when K = C
and Hin when K = H.) We will sometimes omit the subscripts in w% k, and
simply write 1»? when this data is clear from context. It follows from the
proof of Proposition [5.5.10) - 0] that the map A — A is a morphism of unitary
algebras. Therefore, so is the map ¥?. It can furthermore be seen that
this map is surjective with kernel J C End (@k WK ) It also follows from
Proposition and Remark that a value A € C is an eigenvalue of

A if and only if it is an eigenvalue of % (A), where Proposition [5.5.10| gives
more detailed information about the algebraic multiplicity.

We now return to the more general setting where W is given by the direct
sum of (not necessarily isomorphic) indecomposable representations:

haw

1 Tu c1 Coy h1
we=pw. . Pwrpwe. Ppwihw!. Pwl. (5552

Recall that an element Dy € End(W) is of block diagonal form, where
the blocks correspond to isomorphic indecomposable representations. Con-
sequently, we can apply the maps ¥? to each of these blocks to define a
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map

U9 {Dy | AeEnd(W)} (5.5.53)
- RE®...REGCE®...CR OHL ©.. . HE =K
U9 =y xR X YE X g X, X,

Note that by construction of D4, the map U® is a linear bijection. Further-
more, as the elements D4, A € End(W) form a full set of representatives for
the equivalence classes of End(W)/J, we may define ¥ to be a linear bi-
jection from End(W)/J to IC‘?V. Precomposing with the natural projection
from End(WW) onto End(W)/J, we finally obtain a linear surjective map
from End(W) onto IC%, with kernel equal to J. We will also denote this
latter map by ¥®. The following theorem summarizes most of our results
so far by listing some properties of this map.

Theorem 5.5.14. The map ¥< : End(W) — IC‘C;QV is a surjective morphism
of real unitary algebras with kernel J. Moreover, a value A € C is an
eigenvalue of A € End(W) if and only if it is an eigenvalue of one of the
components of W(A).

Proof. It follows from the above discussion that W% is a linear surjective map
with kernel 7. Tt is also clear that U@ (Idy) = Id € K,. To show that ¥ is
a morphism of algebras, we need to show that W@ (A)y?(B) = U9 (AB) for
all A, B € End(W). To this end, let us denote by [ := u+ v + w the number
of different types of indecomposable representations appearing in the decom-
position of W. Let D € End(W) be a block diagonal endomorphism
with respect to isomorphic indecomposable representations. We denote by
(¥9)Y(D) the element of IC‘?V obtained by applying the map 1% to each of the
I block components of D. Note that by definition, (@) (D4) = ¥Q(D,) for

all A € End(W). We have also seen that 9% : End (EBk’ WZ-K) — Ky isa
morphism of algebras, hence we have that (¢?)!(D) (@) (D’) = (v9)(DD")
for all block diagonal endomorphisms D and D’. Given A, B € End(W) it
now follows that
V9(A)U9(B) = ¥9(Da)¥?(Dp)
= (9 (Da)(¥?)(Dp) = (9 (DaDp).
From Proposition [5.5.8|it follows that D4 Dpg and D 4p differ by an element

of J. This difference is furthermore block diagonal, as both Do Dpg and
D sp are. It follows that

(5.5.54)

W) (DaDp) = (V) (Dap) = ¥9(AB) (5.5.55)
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and we see that indeed U9 (A)y?(B) = V2 (AB).

To show that A and D 4 share the same eigenvalues, we note that by Propo-

sition a value A € C is an eigenvalue of A if and only if it is an

eigenvalue of Dy4. This is furthermore equivalent to A being an eigenvalue

of one of the diagonal blocks of D4. By Proposition and Remark
this is equivalent to A being an eigenvalue of one of the components

of (W) (D4) = V9 (D) = V?(A). This proves the claim. O

Example 5.5.15. As in Examples and we let W be given by
wW=wlewleow, (5.5.56)

where W and W are indecomposable representations of real and complex
type, respectively. An element A € End(W) is then given by

ald+Ni; bId+Nps Ais
A= cld +N2’1 dld +N2’2 Ag’g s (5557)
Az Az eld+fI+ N33

where D, is the block diagonal matrix

ald blId 0
Da=|ecld dld o |, (5.5.58)
0 0 eld+frI

It follows that WY (A) is given by

TQ(A) = (‘C’ Z)@(ef f:) e RYaCY c Mat(R, 2)&Mat(R,2) . (5.5.59)

A

Remark 5.5.16. Readers familiar with non-commutative algebra might have
recognised in J the Jacobson radical of End(W). Consequently, End(W)/J
is a semisimple algebra. By Wedderburn’s structure theorem such an algebra
is isomorphic to the direct sum of a number of matrix algebras over a division
algebra. This is precisely the result of Theorem [5.5.14 Moreover, this latter
theorem tells us that Wedderburn’s isomorphism can be done in the case of
End(W)/J while keeping track of the eigenvalues. A

5.5.3 The Third Reduction

Before explicitly describing those matrices with a vanishing or purely imag-
inary spectrum, we will now make one last reduction. This reduction will
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allow us to work with matrices over the complex numbers, which not only
makes calculations easier, but will also allow us to use results from algebraic
geometry. This latter observation will be crucial in Section Unlike in
the last two reductions, the reduced matrix might not have all the eigenval-
ues that the original matrix has (even when ignoring algebraic multiplicity).
However, this discrepancy will happen in a way that is not relevant to the
proof of Theorem [5.4.3]

We define the real and complex algebras

RP == RY = Mat(R,n)

P ._
CP .= Mat(C, n) (5.5.60)

X Y

HE = - =], X,Y eMat(C,n), C Mat(C,2n)
-Y X

We will write K’ to denote one of these algebras when the type is clear. It

can readily be seen that the maps

A B .
C’n.(_B A)HA—FBz
A B ¢ D . _ (5.5.61)
-B A -D (C A+Bi C+ Di

¢ D A -B|7\-c+Di A-Bi

D -C B A

H, :

Identify C§ with CI' and HE with HL as real unitary algebras. We further-
more note that HE can be described as

HP = {Z € Mat(C, 2n) such that SZ = ZS}, (5.5.62)

5= (_OI . 151) . (5.5.63)

Lastly, it can be seen that

for

Mat(C, 2n) = HE @ iHE

as vector spaces over R. See |21] for more on quaternionic matrices and
their real and complex representations. Obviously X € C9 and C,,(X) € CF
cannot have the same eigenvalues, as they are matrices of different sizes.
This likewise holds for the map H,. Nevertheless, the following theorem
tells us that matrices with a vanishing or purely imaginary spectrum are
respected by these identifications.
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Proposition 5.5.17. Any eigenvalue of C,(X) € CF is an eigenvalue of
X € CQ. Furthermore, If X € C is an eigenvalue of X then either \ or its
complex conjugate \ is an eigenvalue of Cy(X).

A € C is an eigenvalue of X € HY if and only if it is an eigenvalue of
H,(X)eHE.

Proof. We define the map

C,®C,: CY — Mat(C,2n)

P <_AB i) n (Cn(()X) cn?X)) _ <AJBB¢ A—OBi> (5.5.64)

between real sub-algebras of Mat(C,2n). Because C,,(X) - Cp,(Y) = C, (X -
Y) for all X,Y € C%, it follows that C, @& C,, likewise respects matrix
multiplication. Since we also see that tr(X) = 2tr(A) = tr((C, ® C,,) (X)),
we conclude from Lemma that X and (C, ® C,,)(X) have the same
eigenvalues, counted with algebraic multiplicity. From this it follows that
any eigenvalue of C,,(X) is an eigenvalue of X. Conversely, an eigenvalue of
X is either an eigenvalue of C,,(X) or of C,,(X), in which case its complex
conjugate is an eigenvalue of C,(X). This proves the first claim of the
theorem.

The second claim follows likewise from applying Lemma [5.5.11] to the map

H, ® H, : HY — Mat(C,4n)

A B C D A+ Bi C+Di 0 0
-B A -D C . —-C+Di A-—Bi 0 0
-C D A -B 0 0 A+ Bi C+Di
-D -C B A 0 0 —-C+Di A-—Bi
(5.5.65)
Note that both argument and image have trace equal to 4 tr(A). O

Combining the results in this section, we see that there exists a surjective
morphism of unitary algebras between End(W) and the direct sum of a num-
ber of spaces of the types RY, CP and HE. As this morphism also respects
the property of having a vanishing or purely imaginary spectrum, the task
of describing those elements in End(W) with this property is reduced to
finding those in the three families of matrices RZ, CI and HE. In partic-
ular, we will be able to prove Theorem [5.4.3] once we prove an analogous
result for the matrix algebras K. Note that reducing the problem to one
in P means that we may essentially forget about the symmetry monoid .
Indeed, it already follows that the codimension of the set of endomorphisms
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in End(W) with a vanishing or purely imaginary spectrum depends only on
the decomposition of W into indecomposable representations. Apparently
all other details of the action of the symmetry monoid ¥ on the space W do
not play a role.

5.5.4 A Remark on Uniqueness

During the reductions in this section we have made a particular choice of
generators Id, I;, J;, K; € End(W;) for any indecomposable representation
W; of quaternionic type, and likewise for those of complex type. It may be
insightful to see what effect a different choice of generators has on the man-
ifolds in Theorem [5.4:2] We claim that there is no effect. More precisely, a
different choice of generators will correspond to a particular isomorphism of
the algebra KI'. As the manifolds in ! that we will construct in Section
will be invariant under these isomorphisms, we will conclude that the
manifolds in Theorems and [5.4.2| will be unaltered by a different choice

of generators as well.

To illustrate, suppose {Id, I, J, K} C End(W/?) and {Id,I’, J', K’}

C End(W/T) both generate the quaternionic structure. Then an element
X € End(W[) can be expressed in either set of generators and a nilpotent
term. For convenience, let us write Id = Iy, I = I, J = I, and K = I3.
Likewise, we write Id = I}, I’ = I] and so forth. It follows that there are
coefficients A; ; and Aj ; such that

3 3
L= Ai;Ij+N; and I; = A 1+ N (5.5.66)
j=0 =0

for i € {0,...3}, and where the N; and N/ are nilpotent endomorphisms. If
we write

3 3
X =) ali+N=> dlI+N eEnd(W);), (5.5.67)
i=0 §=0
for N and N’ nilpotent, then it follows that
i=0

3 3
ay = ZAz}jai and a; = ZA;-’Z-G;- . (5.5.68)
=0

Motivated by this, we define a map ¢ from the quaternions to itself given by

P(ao + a1i + asj + ask) = af + ayi + abj + a4k . (5.5.69)
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From ([5.5.68]|) we see that this map is linear and invertible. If we furthermore

write

3 3
Y =) bil;+N=> VI;+N €EndW}), (5.5.70)
i=0 j=0
and
3 3
XY =Y cli+N=> dI;+N €EndW}), (5.5.71)
i=0 j=0

Then we see that the ¢; are formed from the a; and b; following the rules of
regular multiplication in the quaternions. The same holds for the c}, a} and
b;. In other words, we have

(ag + a1 + azj + azk)(bo + bii + baj + bsk) = co + 1@ + c2j + c3k,
(ah + ayi + abj + ak) (bl + by + byj + byk) = ¢ + cyi + chj + chk .
(5.5.72)

However, what this tells us is exactly that ¢(zy) = ¢(x)¢(y) for all z,y € H.
As it furthermore holds that ¢(1) = 1, we conclude that a different choice of
generators for the quaternionic structure leads to a (unitary) automorphism
of the quaternions applied to the entries of #Z. The same holds analogously
for the complex case. For the real case there is no choice left, as we always
take Id as the operator whose class in End(W?)/Nil(W) generates the real
structure.

It can easily be verified that the only unitary isomorphisms of C are the
identity and complex conjugation. This latter operation yields component-
wise complex conjugation to the entries of CI = Mat(C, n). However, it will
follow from Remark [5.8.9] in Section [5.8] that this gives the same manifolds.
It follows from the Skolem-Noether theorem (see Proposition 2.4.7. of [21])
that every automorphisms ¢ of H is an inner automorphism. In other words,
there exists an a = a(¢) € H such that ¢(z) = axa~! for all x € H. This
means that a different choice of generators for the quaternionic structure of
End(WH) /Nil(WH) will yield a transformation in HZ that is just given by
conjugation by an element in Y. As the manifolds in Theorems and
[6.8.14) will be conjugacy invariant, such a transformation will not effect these
manifolds. A
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5.6 Proof of Main Results

Here we prove Theorem [5.4.3] assuming a technical result on general matrix
algebras that will be proven in the next sections. We also present the theorem
in the introduction as a consequence of Theorem

5.6.1 Proof of Theorem m

We will now prove Theorem [5.4.3] under the assumption of Theorem [5.6.1]
below. Theorem [5.6.1] itself will then be proven in the following sections
as Theorems [5.8.3] [5.8.10} [5.8.13] [5.8.4] [5.8.11] and [5.8.14] Recall that in
Section we have already proven Theorem assuming the result of
Theorem [5.4.3

Theorem 5.6.1. The set of all nilpotent elements in RE, CF and HE is
the disjoint union of a finite number of conjugacy invariant, embedded sub-
manifolds of real codimension greater or equal to n, 2n and 4n, respectively.
In all three cases, there is unique manifold of this exact codimension.

The set of all elements in RY, CE and HE with a purely imaginary spec-
trum is the disjoint union of a finite number of conjugacy invariant, em-
bedded submanifolds of real codimension greater or equal to [n/2], n and n,
respectively. Again, there is in all three cases exactly one submanifold of this
precise codimension.

Note that the monoid ¥ does not occur in Theorem [5.6.1] anymore.
Corollary 5.6.2. Let W be the representation

W:éwﬁ...éwfém. éwc@wl. QB (5.6.1)

where the WX, K € {R,C, H}, are mutually non-isomorphic indecomposable
representations. We write

Kiy =RE&.. R ecle..cCloH &.. 1, (5.6.2)

for the corresponding representation of the endomorphism algebra of W. The
set of milpotent elements in K&, consists of a finite number of disjoint, con-
Jjugacy invariant manifolds of real codimension

Kw =71+ +ry+2c+- +2c +4h1 + -+ 4hy

or higher. Ezxactly one of these manifolds has codimension precisely equal to
this number.
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Likewise, the set of elements in IC{?V with a purely imaginary spectrum con-
sists of a finite number of disjoint, conjugacy invariant manifolds of real
codimension

Ow = [r /2] + 4 [ru/2] Fer 4+ ot hy 4o+ By

and higher, with this exact number appearing only once. Here, the spectrum
of an element of IC{,DV is to be understood as the union of the spectra of the
individual components, conform an interpretation as block matrices. Conju-
gacy invariance is with respect to invertible elements in the algebra IC{;.

Proof. We define submanifolds in ICEV by taking all possible product sets
of the submanifolds in RY, CI' and HE. Tt follows directly from Theorem
that these submanifolds satisfy all the conditions of the statement.
Note that if we have a finite number of manifolds M, ... M} with embedded
submanifolds N; C M; of codimension n;, then Ny x ... N is an embedded
submanifold of M; x ... M} of codimension ny + ...ng. O

Proof of Theorem[5.4.3 As we may write

r Tu c Cy h hw
Wg@Wﬁ...@mf‘@wf...@Wféwf...@wf, (5.6.3)

there exists an isomorphism between the right hand side and the left hand
side of equation . We fix such an isomorphism, so that we may assume
without loss of generality that W equals the direct sum on the right of equa-
tion (5.6.3). Note that a different choice of identification (i.e. isomorphism)
will not yield other submanifolds, as we will prove that these manifolds are
conjugacy invariant. We furthermore write

Ky =Re®..REBCL®...CLOHY &.. . H (5.6.4)
and

Kiy=RE &..REecle..CloH, .. .1 (5.6.5)

1

for the algebras corresponding to the real and complex representations of the
endomorphism algebras. From Theorem we know that there exists a
surjective, linear map ¥© : End(W) — Kyi- Moreover, by the identification
between K, and K&, we get a surjective, linear map ¥* : End(W) — K&
From Corollary We see that the set of nilpotent elements in IC{?V consists
of a finite number of disjoint, conjugacy invariant manifolds of codimension
Ky and higher, with this exact number appearing only once. Likewise, we
see that the set of elements in K, with a purely imaginary spectrum consists
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of a finite number of disjoint, conjugacy invariant manifolds of codimension
Cyw and higher. Again, this exact number appears only once. From Theorem
and Propositionwe see that the map ¥ preserves the property
of having a vanishing or purely imaginary spectrum. Therefore, the disjoint
manifolds in End(W') with a vanishing or purely imaginary spectrum will be
just the inverse images under U of the manifolds in ICII/DV. Because UF is a
surjective linear map, the inverse images are indeed embedded submanifolds
of the same codimension as their original.

It remains to show that the manifolds in End(WW) are conjugacy invari-
ant. However, as 9 and hence W' are morphisms of unitary algebras, it
holds that ¥ (C~1) = WF(C)~! for any invertible element C' € End(W).
Therefore, if M is a conjugacy invariant subset of Kf, and we have A €
(UP)=1(M), then WP (CACT1) = OFP(C)UF(A)(VF(C))~! for any invert-
ible C € End(W). From this it follows that CAC~! is an element of
(UP)=1(M) as well. This finishes the proof. O

5.6.2 Transversality

We will now show how the technical result of Theorem [5.4.2] implies the
more intuitive result in the introduction. To this end, we need the following
definition:

Definition 5.6.3. Let M and N be manifolds and let A C N be a subman-
ifold of N. A C' map f: M — N is called transverse to A (notation fhA)
if for all 2 € M with f(x) € A it holds that Im(T, f) + To)A = Ty N.

Remark 5.6.4. Note that whenever dim M + dim A < dim NV, the condition
Im(Ty f) + Ty@)A = Ty N cannot be satisfied. Hence, in this case the
set of all f transverse to A is exactly the set of all C' maps f such that
Ff(M)N A =0. In other words, transverse to A then means avoiding the set
A. AN

Next, we introduce different topologies on the set of smooth maps from M
to N. We will see that the set of maps from M to N transverse to a given
finite set of submanifolds is dense in these topologies.

Definition 5.6.5. Let s be a natural number and let M and N be two
C*® manifolds (in particular, M and N might be C'°° manifolds). Denote
by C*(M, N) the set of all C* maps from M to N. We will give two ways
of defining a topology on C®(M,N). To this end, let (U C M,¢) and
(V C N,v) be charts on M and N, and let K C U C M be a compact
subset of M. Let furthermore € > 0 be given and let f € C*(M,N) be a
map satisfying f(K) C V. We denote by

N*(f,(U,¢), (V. 9), K, €)
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the set of all g € C°(M, N) such that g(K) C V and
1Dz (wfé~") = Dr(vge)lI< e

for all z € K and k € {0,...s}. The weak or compact-open topology on
C*(M, N) is the smallest topology containing all sets of this form. We de-
note C*(M, N) with this topology by C}, (M, N). In particular, a base for
Cf, (M, N) is given by all sets of the form

UNS(fiv(Ui,¢i)7(Viawi)vKi;Gi), (5.6.6)

icl

where [ is some finite index set.

We can enlarge this topology by allowing not just finite index sets I in
equation , but also sets I such that the family of sets (U;);er is locally
finite. That is, any point in M has a neighbourhood intersecting U; for
only finitely many ¢ € I. The topology on C*(M, N) with base the sets in
with (U;)ser locally finite is called the strong or Whitney topology.
We denote C°(M,N) with this topology by C&(M,N). Cy(M,N) and
C¥(M,N) are then defined as the union of the topologies on C'°(M, N)
induced by the inclusions in Cj, (M, N) and C§(M, N) respectively, for all
finite s. See [12] for more on these topologies.

Remark 5.6.6. In |12], a base for the strong topology is given only by sets of
the form (5.6.6) with f; = f; for all 4,j € I (and with (U;);cs locally finite).
However, for

g€ UNS(fi7(Ui7¢i)7(‘/iawi)7Kiaei)7 (567)
el
with
max sup || Dy (vifid; 1) — Dy (¢igoi )ll= i < ei, (5.6.8)
S8 zeK;

it is readily seen by the triangle inequality that

g€ JN(g, (Ui, 8:), (Vi ), Ky € — i) (5.6.9)
el

CUNS(fia(Uiv¢i)7(Vvivwi)aKivei)' (5610)
el

Therefore, the strong topology can also be defined by a base consisting of
sets of the form (5.6.6) with f; = f; for all 4,5 € I. Note that if M is
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compact, any locally finite family of open sets (U;);er is finite (M can then
be covered by finitely many sets, each intersecting only finitely many Uj;).
Therefore, the weak and strong topologies coincide when M is compact. A

Harder to prove is that C}, (M, N) and C&(M, N) are Baire spaces for 0 <
s < oo. That is, the intersection of countably many dense open sets is again
dense. See [12]. We call a set residual if it contains the intersection of
countably many dense open sets. In particular, residual sets are therefore
dense in Cf,(M,N) and C§(M, N).

The following proposition follows from Theorems 2.1 and 2.5 in Chapter 3
of [12]. This result will be used to argue that a subrepresentation U is not
expected to occur as a kernel or center subspace in a k-parameter bifurcation
if k is less than Ky or Cy, respectively.

Proposition 5.6.7. Let M and N be manifolds and let Ny till N, be sub-
manifolds of N. Let s be a (non-zero) natural number or infinity. The set
of C*-maps from M to N that are transverse to all manifolds N; is residual
(and therefore dense) in both Cy,(M,N) and C&(M,N).

In contrast to Proposition the next result will be used to argue that
a subrepresentation U is expected to occur as a kernel or center subspace
in a k-parameter bifurcation if k equals or exceeds Ky or Cy, respectively.
Proposition [5.6.8] is a well-known consequence of transversality, but an ex-
plicit proof can be hard to find in the literature. The method of proof that
we will use is adapted from [10].

Proposition 5.6.8. Let A be an m-dimensional submanifold of the
n-dimensional manifold N and let U C R* be a non-empty open subset.
Assume furthermore that k +m > n. Then there exists a non-empty open
subset of maps f € C(U, N) (in both the strong and weak topologies) such
that f(UYN A #0.

Proof. By choosing a submanifold chart, we may assume that A equals R™ x
0:={(z1,...Tm,0,...0)} C R". Identifying R* with 0 x R* :=
{(0,...0,2p—g+1,-.-2n)} C R™, we may then simply set f equal to the
identity to obtain a map whose image intersects A (by shifting U we may
always assume that U contains 0). Because U is open and because k > n—m,
U contains a closed (n — m)-dimensional disk centered around 0, D, (0) C
0 x R*™™ C 0 x R*, for some ;1 > 0. Let P denote the projection from R™
to 0 x R"™™. Then P o f restricts to the identity on D, (0). We claim that
whenever g is a smooth map from U to R" satisfying ||g(z) — f(z)||< S for
all z € D,(0), then the image of g intersects R™ x 0. To this end, it suffices
to show that the image of P o g|p (o) contains 0.

Suppose the converse, so that g : U — R" satisfies ||g(z) — f(z)||< Fu for
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all z € D,(0) and so that g := P o f|p,(0): Du(0) = D,(0) does not reach
0. We will use the concept of the degree of a smooth map to arrive at a
contradiction. Let f be a smooth map between a compact manifold X and a
connected manifold Y. If X and Y have the same dimension, then the mod 2
degree of f, notation degs(f), equals the number of points in f~*(y) modulo
2 for any regular value y € Y. It is shown in |10] (Chapter 2, Paragraph 4)
that this is a well-defined concept. This reference also contains the following
statements that we will be using:

1. The mod 2 degree of a map is homotopy invariant.

2. If X is the boundary of a manifold W, and f can be extended to all of
W, then dega(f) = 0.

We also note that if X = Y, the degree of the identity map equals 1, as
every point has only itself as a preimage.

Let S,(0) denote the boundary of D, (0). As g does not reach 0, we may
define the map

g(x)
Ta@ (5.6-11)

from S, (0) to itself. As h may be extended to a map from D, (0) to S, (0)
(also given by equation (5.6.15))) we conclude from the second statement that
dega(h) = 0. We will now show that & : S,(0) — S,,(0) is homotopic to the

identity, thereby arriving at a contradiction using the first statement. To
this end, note that for all € D, (0) we have

lg(2) — | = II(POQ)(I) = (Po @< IP[[-llg(x) = f()]]

1
FH- (5.6.12)

h:xw—pu

<Pl- *u <

It follows that for all € S,,(0) we have

‘"”H - H(Ha&)ﬂ ) 1) 3(w) +§(@) -

[|g(x
<| 1\-||a<x>||+|g<x>—x||

= [ =lg(@)[| [+[1g(x) — ||
= [l=l[=llg@)Il [+[|g(z) — =]

~ . 1
< llg(z) = zll+llg(z) —2f|<2- gu=p. (5.6.13)

(e |H
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From this we see that for all ¢ € [0,1] and = € S,(0) it holds that
[th(z) + (1 = t)z|| = ||z — t(z — h(@)||> [|2[|=|[t(z — h(2))]]
= p = tl-llz = h(@)[[= p = [lz = h(z)]]
>p—p=0. (5.6.14)

Hence, ||th(z)+ (1 —1t)z|| never vanishes and we get a well-defined homotopy
between h and the identity given by

th(z) + (1 —t)x
[[th(z) + (1 = t)z|]

(,t) = p (5.6.15)

for (x,t) € S,(0) x [0,1]. We conclude that 1 = dega(h) = 0. This is of
course a contradiction, and the proposition follows. O

Remark 5.6.9. We may interpret Theorem [5.4.2] and Propositions [5.6.7 and
[5.6.8] as results on generic bifurcations in equivariant systems. To see why,
let ¥ be a monoid acting on a finite dimensional representation space V'
by linear maps A,, 0 € ¥. Let F(x,\) be a family of equivariant vector
fields on V, indexed by a parameter ) in some open set  C RF. Suppose
furthermore that F(z(A),\) = 0 for some smooth curve of values xz(\). If
the zeroes x(A) are all invariant, that is if A,X(X) = z(A) for all o €
Y and A € Q, then linearization gives a map f from 2 to End(V) given
by f(A) = D.(xz(\),A). For a bifurcation to appear along x()), one of
the endomorphisms D, (z(A), A\) has to have a non-trivial kernel or center
subspace. Hence, we are interested in maps from the manifold €2 into the
manifold End(V') that have a non-trivial kernel or center subspace. Note
that f can be perturbed into any other map from  to End(V), by adding
the equivariant map B(X\)(z — (X)) to F(x(X), A) for any map B from € to
End(V).

As a result, if U is any (complementable) invariant subspace of V' with
k < Ky, then it follows from Proposition that U will not 'robustly’
occur as the generalized kernel of any of the linear maps f(\) = D, (z(\), \).
More precisely, if U does appear as the generalized kernel of any of the maps
f(A), then after an arbitrarily small perturbation of f(\) it may not anymore.
Likewise, one does not expect U to appear as the center subspace of any of
the maps f()) if k < Cy.

If, however, it holds that k > K/, then by Proposition[5.6.8| there is an open
set of maps f : Q — End(V') for which U appears as the generalized kernel of
one of the maps f(\). Similarly for U as the center subspace if k > Cy. We
summarize these results by saying that a generic k-parameter steady state
bifurcation occurs along those U for which Ky < k and that generically a
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center manifold is a graph over those U for which Cy < k. In particular,
a generic l-parameter steady state bifurcation appears along exactly one
indecomposable representation of real type, as this is the only way it can
hold that Ky = 1. Likewise, a generic 1-parameter Hopf bifurcation appears
along two isomorphic indecomposable representations of real type or along
one indecomposable representation of either complex or quaternionic type.
Note that Cy = 1 only when U is indecomposable of any type or when
U is the direct sum of two isomorphic indecomposable representations of
real type. Moreover, if U is indecomposable of real type then elements
of End(U) have only one, real eigenvalue (of algebraic multiplicity dim(U)).
This excludes the standard Hopf bifurcation scenario whereby two (separate)
conjugate eigenvalues pass through the imaginary axis. A

5.7 Intermezzo; Some Algebraic Geometry

In this section and the next we will prove Theorem [5.6.1] by identifying those
elements in RY, CI' and H with a vanishing or purely imaginary spectrum.
Our first step is proving the technical result of Theorem below. It
should be noted that the results in this section are known to experts, but
hard to find in the literature.

Theorem 5.7.1. Conjugacy classes in Mat(C,n) are embedded manifolds.
That is, given X € Mat(C,n), the set {A7*XA | A € GI(C,n)} is an
embedded submanifold of Mat(C,n).

In order to prove Theorem we will use a theorem from [23|. To this
end, we will have to introduce some basic algebraic geometry. We begin by
defining an alternative topology on C".

Definition 5.7.2. The Zariski topology on C" is defined by stating that its
closed sets are given by the common zeroes of a set of polynomials. More
precisely, let C[ X1, ..., X,] denote the set of polynomials in n-variables and
coefficients in C. A subset Z C C" is closed in the Zariski topology (or
simply Zariski-closed) when it can be written as

Z=7Z(S)={zxeC"|px)=0Vpe S} (5.7.1)
for some set of polynomials S C C[X1,...,X,].

Note that Zariski-closed (or Zariski-open) sets are also closed (or open) in
the usual, Euclidean topology on C™. The following well-known result states
that Zariski-closed sets can be described as cut out by only finitely many
polynomials. The proof can be found in for example [3], Paragraph 9.6.
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Theorem 5.7.3 (Hilbert’s basis theorem). Every ideal in C[X1,...,X,] is
generated by finitely many elements. Consequently, for any Zariski-closed
set Z there exist finitely many polynomials p1, ... pr such that

Z=Z({pr,-.pi}) = {2 €C" | py(@) = = pr(z) =0}, (5.7.2)

We will shortly comment on how the second part of Theorem follows
from the first. One easily verifies that it does not matter whether a Zariski-
closed set is defined by the vanishing of a set of polynomials S, or by the
vanishing of the ideal generated by this set, (S). In other words, we have
Z(S) = Z((S)). As the ideal (5) is also generated by finitely many elements
p1,--- Pk, we find Z(S) = Z({p1,...,px)) = Z({p1, -, pr})-

We continue to introduce some terminology from [23]. An example of an
affine algebraic variety over C is a Zariski-closed set Z C C" together with
the algebra of functions C[Xjy,...,X,]|z. More generally, we have the fol-
lowing definition.

Definition 5.7.4. An (abstract) affine algebraic variety is a set V with an
algebra A of functions from V to C, such that the following property holds.
There exists a bijection ¢ from V to a Zariski-closed set Z C C™ for which
t*:C[X1,...,Xn]lz— A, f+— forisan isomorphism of algebras.

The Zariski topology can more generally be defined on any affine algebraic
variety (V, A), by stating that a subset of V' is closed when it is given by
the vanishing of some elements of A. Moreover, given two affine varieties
(V, A) and (W, B), one can define the product variety (V x W, A® B). This
is readily seen to be an affine algebraic variety in its own right. Here, A® B
is interpreted as an algebra of functions from V x W to C by setting (a ®
b)(v,w) := a(v) - b(w) for a®@b € A® B and (v,w) € V x W. To complete
the description of the category of affine algebraic varieties, we have:

Definition 5.7.5. A morphism between affine varieties (V, A) and (W, B)
is a map f from V to W such that f*b := bo f is an element of A for all
be B.

Finally, we need the notions of an affine algebraic group and the action of
an affine algebraic group on an affine algebraic variety. These will be the
appropriate generalizations of the action of GI(C,n) on Mat(C,n).

Definition 5.7.6.

1. An affine algebraic group is an affine algebraic variety (G, A) that is
also a group for which the operations of multiplication
m(e,8): (G x G,A® A) — (G, A) and taking inverses o~1 : (G, A) —
(G, A) are morphisms of affine algebraic varieties.
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2. An algebraic action of an affine algebraic group (G, A) on an affine
algebraic variety (V, B) is defined as an action of the group G on the set
V such that the defining map £ : (GxV, A®B) — (V, B), {(g,v) = g-v
is a morphism of affine algebraic varieties.

Example 5.7.7. It can be shown that

(Gl((C, n), (C[ .. ,X@j, ... aDet_l]lGl(C,n))

with the usual matrix multiplication is an affine algebraic group. Here,

(C[ .. ,Xl',j, e Detil]‘(;l((c’n)

is the algebra of functions on G1(C,n) generated by the matrix coeflicients

X for 1 <i,5 < nand 1 over the determinant, Det ™" (X) := 1/Det(X) for

X € GI(C,n). See [23].

As an example of an algebraic action, we have:

Lemma 5.7.8. We give Mat(C, n) the structure of an affine algebraic variety
by identifying it with the (Zariski-closed) set C"*™, together with the natural

algebra of polynomials in n

2 wariables. The conjugacy action of GI(C,n)

(with the affine algebraic structure defined in Example on the affine

algebraic variety Mat(C, n) is an ezample of an algebraic action.

Proof. Tt is clear that conjugation defines an action of G1(C, n) on Mat(C, n).
Therefore, it remains to show that the defining map of this action,

& :Gl(C,n) x Mat(C,n) — Mat(C,n) (5.7.3)
(C, X))~ C'XC

is a morphism of affine algebraic varieties. In other words, given a polynomial
p€C[...,X;j,...], we need to show that the map (C, X) — p(C~1XC) is
an element of

(C[ .. 7X7,',j; ey Det_l]‘Gl(C’n)(@C[. ey Xi,j7 .. ] .

It suffices to verify this for the generators X, ;, as pre-composition by ¢ is
linear and multiplicative on function space. Therefore, the statement of the
lemma is true whenever the map (C, X) — (C~'XC); ; is an element of

(C[ . 7Xi,ja ey Detfl]\GI(Cm)@(C[. “ey Xi,j7 . ]

for all 7, j. Writing it out, we get

(CT'XC)ij =Y (CTinXpuCrj = (CT)isCriXps.  (5.74)
k1l k,l

179



CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

Now, X +— X}, is clearly an element of C[..., X ;,...]. Likewise, C — Cp ;
is an element of

Cl... . CR T ,Detil]k;l(((;’n) .

Furthermore, as taking the inverse is a morphism from the affine algebraic
group

(Gl((c7 n)’ (C[ B 7Xi,j> ceey Det_l]‘Gl(C,n))
to itself, and as the map C' +— C; j is an element of
(C[ ey Xy ,Det71]|G1(C7n) ,

so is the map C' — (C71); x. (This fact can also be directly verified using
Cramer’s rule for inverses.) From this we conclude that the map (C, X) —
(C71XC); ; is indeed an element of the algebra

(C[ cey Xi,j7 ce aDet_IHGI(C,n)@C[- . aXi,ja .. ] .
This proves the lemma. O

The following theorem is key in proving Theorem [5.7.1] Its proof can be
found in [23].

Theorem 5.7.9. Let (G, A) be a connected (in the Zariski topology), affine
algebraic group acting algebraically on an affine algebraic variety (V, B).
Then every orbit is Zariski-open in its Zariski-closure.

Next, we need the concept of a non-singular point in an algebraic variety.
Heuristically, this means that around this point, the variety looks like a
submanifold of C". The following definition is adapted from [11].

Definition 5.7.10. A Zariski-closed subset Z C C™ is called irreducible if
it cannot be written as the union of two Zariski-closed, strict subsets of Z.
Such a set can be given the notion of a (finite) dimension. This can be
done algebraically by looking at an ideal in C[X7,...,X,] defining Z, or
geometrically by looking at chains of irreducible varieties that are contained
in Z. See |11] for more on these concepts. Let = be a point in the Zariski-
closed, irreducible subset Z = Z({p1,...ps}) C C" of dimension r. Writing
P:=(p1,...ps) : C" — C?, we say that x is non-singular if the rank of the
Jacobian DP(x) equals n — r. x is called singular if it is not non-singular.
It can be shown that the definition of a non-singular point is independent of
the set of functions {p1,...ps} used to define Z.
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The following lemma shows that 'most points’ are non-singular. This lemma
is Theorem 5.3 in Chapter 1 of [11], adapted to our setting.

Lemma 5.7.11. Let Z be a Zariski-closed, irreducible subset of C™. The
set of singular points of Z is a Zariski-closed, strict subset of Z.

The following lemma reinforces our remark that non-singular points should
be thought of as those points where the variety looks like a differentiable
manifold. Its proof can be found in [17].

Lemma 5.7.12. Let Z = Z({p1,...ps}) be a Zariski-closed, irreducible
subset of C™ of dimension r, and let x be a non-singular point of Z. Suppose
that, without loss of genmerality, the derivatives of py till p,_, are linearly
independent at x. In other words, defining Q := (p1,...DPn—r), the Jacobian
DQ(x) has full rank. Then there exists a Zariski-open set U C C™ containing
x such that ZNU = Z({p1,...Pn—r}) NU. In other words, Z can locally be
seen as cut out by just the polynomials py till pp_,.

It should be noted that [11] uses a slightly different definition of affine alge-
braic variety, calling a Zariski-closed subset of C™ an affine algebraic variety
only when it is irreducible. Dropping the irreducibility condition, [11] speaks
of an algebraic set. This will not be problem though, as we will show using
the lemma below that the Zariski-closure of a conjugacy orbit is in fact irre-
ducible. Note that the notion of irreducibility can be defined on any affine
algebraic variety using its Zariski topology. The following lemma can be
deduced from Remark 3 in Chapter 1 of [23].

Lemma 5.7.13. An affine algebraic group is irreducible if and only if it is
connected in the Zariski topology.

We are now in a position to prove Theorem [5.7.1

Proof of Theorem[5.7.1 We have shown in Lemma that conjugation
is an algebraic action of the affine algebraic group GI1(C,n) on the affine
algebraic variety Mat(C,n). From the fact that the functions in

(C[ .. 7X’£,j7 ey Det_l]‘Gl(C,n)

are continuous in the Euclidean topologies on G1(C,n) and C, we conclude
that Zariski-closed and Zariski-open sets in GI(C,n) are closed and open
respectively in the Euclidean topology on G1(C,n) as well. As a result, we
may conclude that GI(C,n) is connected in the Zariski topology from the
fact that it is connected in the Euclidean topology. See also Remark 4 in
Chapter 1 of [23]. It therefore follows from Theoremthat the conjugacy

181



CHAPTER 5. TRANSVERSALITY AND GENERALIZED SYMMETRY

orbit of any fixed element in Mat(C,n) is Zariski-open in its Zariski-closure.
Let us denote this single orbit by Ox C Mat(C,n), for X € Mat(C,n),
and its Zariski-closure by Ox C Mat(C,n). By Lemma the alge-
braic group GI(C,n) is an irreducible variety. Fixing X, we get a map
éx = €(0,X) : GI(C,n) — Mat(C,n) whose image is Ox. From the defi-
nition of a product variety, one sees that £x is a morphism of varieties as
well. Furthermore, from the definitions of a morphism and of the Zariski-
topology, one easily verifies that a morphism of varieties is continuous in the
Zariski-topology.

Now suppose we have Ox = A U B for two Zariski-closed sets A, B C
Mat(C,n). Tt follows that GI(C,n) = & (A) U ExH(B), with €5(A) and
¢5"(B) Zariski-closed. As GI(C,n) is irreducible, it follows that (without loss
of generality) G1(C,n) = ' (A). We conclude that Ox = ¢x(GI(C,n)) C
A, and therefore Ox C A. This proves that Ox is an irreducible set as well.
By Lemmawe conclude that the set of singular points of Oy is Zariski-
closed. As it is also a strict subset of Ox, we conclude that Ox cannot be
completely contained in this set of singular points (otherwise the closure of
Ox would be smaller). We conclude that there exists a point Y € Ox that is
a non-singular point of the irreducible variety Ox. Now, from Lemma
we see that there exist a (Zariski)-open set U C Mat(C, n) containing ¥ and
polynomials p; till p,,_, such that Ox NU = Z({p1,...pn—r}) NU. Let V
furthermore be a (Zariski)-open subset of Mat(C,n) such that OxNV = Ox.
Note that the Zariski-topology on a Zariski-closed subset W C C™ coincides
with the topology induced by the Zariski-topology on C™, as the algebra of
functions on W is obtained from that on C™ by restriction. It follows that

OxNU =O0xNVNU = Z({p1,...pn_r})NUNV = PHO)NUNV, (5.7.5)

for P:= (p1,...pn—r). As DP(Y) has maximal rank, we conclude from the
constant rank theorem that Ox is locally around Y an embedded subman-
ifold. In particular, if U’ is an open set containing Y such that Ox N U’
is a submanifold, then for any C' € GI(C,n), COxC~1NCU'C~! = Ox N
CU'C~! is a submanifold, with CU’C~! containing CYC~'. We conclude
that Ox is globally a submanifold of Mat(C,n). This proves the theo-
rem. O

5.8 Geometry; Counting Dimensions

Next, we will determine the dimensions of the set of those elements in RY,
CP and HY with a vanishing and purely imaginary spectrum. In order to do
so, we will need the results of Lemma below. These are well known, but
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included for completeness. Furthermore, we will amply use the techniques
behind these results, as well as their generalizations later on.

Definition 5.8.1. For n € N and A € C we introduce the Jordan block
matrices B, (\) € Mat(C, n) given by

A1 0O ... 0 O
0 A 1 0O ... 0
Bo()\) = R . (5.8.1)
0 0 0 A 1
0 0 0 0 A

More generally, let p = (s1,...s) withs1 > ... > s > land s14+--+sp =n
be a partition of n, We define the block-diagonal matrix B, ,(A) € Mat(C,n)

B‘?1 (/\) 0 0
0 By,(\) ... 0
B p(\) = . . (5.8.2)
0 ... 0 By,

Lemma 5.8.2. For fized n € N and partition p, the vector spaces

Im(Lg, ,(\),B,.,) = Im([Byp(N), e])

and

ker(ﬁBn,p(A),Bn,p(/\)) = ker([By, (A), o])

are independent of A € C. Here, [B,, ,()\), 8] denotes the commutator opera-
tor with By, »(A).

For the trivial partition p = (n) (that is, when By, »,(A) = Bp())), the com-
plex dimension of the image is equal to n?> — n. For all other partitions this
dimension is strictly smaller than n? — n.

Proof. From the definition of B,, ,,(\) we see that B, ,(\) = B, ,(0) + AId.
Consequently, for all X € Mat(C, n) it holds that

[Bnp(A), X] = [Byp(0), X]+ [A1d, X] = [B, ,(0), X], (5.8.3)

as every matrix commutes with AId. We therefore conclude that [B,, ,,()), o]
= [By,,(0), ] as operators. In particular, it holds that their images agree
and that their kernels agree.
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To determine the dimension of Im(Lp,, (0),5,(0)), let {ei}7—; be the standard
basis of C". By the definition of B,(0) it holds that B,(0)e; = 0 and
B,(0)e; = e;_1 for 2 < i < n. Likewise, we see that B,(0)%e, = 0 and
B,(0)Te; = ej1q for 1 < i < n—1. We will set f; := e,11-i, so that
B, (0)Tfi =0and B, (0)T f; = fi_1 for 2 < i < n. As in the proof of Lemma
the set {eiij}m forms a basis of Mat(C,n), and we have

Lp, .80 € f])=efl 1 —eirf] Lp,o).0ef])=efl,
(5.8.4)
L, ©0),8.0) € f]) =—ei_1f] Lp, )80 (e1f]) =

for 2 <i,7 < n. Next, we define the spaces
Vi = span{eiff |i4+j=m}.

From the equations it follows that Lp (0),B, (o) restricts to a map
from V,, to V,,_1 for every m. We claim that for m > n + 1, the map
LB, (0),B,(0)|v,, has vanishing kernel, whereas for m < n 4 1 the map

LB, (0),B,(0)|Vv,, has a one-dimensional kernel. Indeed, setting [7, j] := e; ij
we find for m > n + 1:

i ailt,m—1i ) (5.8.5)

7

LB, (0),B.(0) (

1=m-n =m—-n
n n—1
= Z a;li,m—i—1] — Z ajiilj,m—j—1]
i=m—-n j=m—-mn-—1
n—1
= —am-_n[m—n—1,n]+ (a; — aj41)[i,m —i—1]
=m-—-n

+ap[n,m—n—1].

One readily verifies that this map has vanishing kernel. For m < n + 1 we
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find
m—1
Lp, (0),8.(0) (Z ali,m — z’}) (5.8.6)
i=1
m—2 m—1
:Zai[i,m—i—l]— a;li —1,m — 1]
=1 1=2
m—2 m—2
= ali,m —i—1] - ajilj,m—j—1]
i=1 j=1
m—2
=) (ai—aip1)[i,m—i—1],
=1
which has a one-dimensional kernel given by a1 = -+ = a,,—1. From the
fact that
2n
Mat(C,n) = €P Vi (5.8.7)
m=2

it follows that the kernel of Lp (0)5, (o) has dimension n. Therefore, its
image has dimension equal to n? — n.

Next, we prove that dimIm(Lp,  (0),B, ,(0)) is strictly smaller than n? —n,
whenever p = (s1,...5;) # (n). To this end, let us denote a matrix

X € Mat(C,n) as X = (X;;), 1 <4,j <k, with respect to the block decom-
position of the matrix (5.8.2). We see that [B, ,(0), X];; = B, (0)X;,; —
Xi,iBs,;(0) for all 1 <4 < k. From this and the second part of the theo-
rem, it follows that the image of the map given by the i’th diagonal block
of [By(0), e] has codimension s;. Together, the image of all the diagonal
blocks therefore has codimension sy + - - - 4+ s = n. However, for

) # j we see that [Bn,p(o)yX]i,j = Bgl (O)XLJ - Xi,stj (0)

= *ﬁBSj (0),B... (0) (Xi;)- By Lemmathe image of this map has a strictly
positive codimension. From this it follows that the dimension of the image of
LB, ,0),B,.,(0) 18 strictly less than n? —n, thereby proving the theorem. [

5.8.1 The Case C’

We will start the proof of Theorem with the algebra CI = Mat(C,n).
Our goal is to determine the dimension of the set of nilpotent matrices in
CP and of those matrices with a purely imaginary spectrum.

Theorem 5.8.3. The set of nilpotent matrices in CL is composed of finitely
many conjugacy invariant embedded manifolds of complex dimension n®> —n

or lower. Exactly one of these manifolds has dimension equal to n?> —n.
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Proof. Every nilpotent matrix is conjugate to exactly one of the matrices
B, 5(0). Therefore, the manifolds will be the conjugacy orbits

Op, ) ={A ' Buy(0)A| A€ GI(C,n)}.

We have proven in the last section that these are indeed embedded submani-
folds of Mat(C,n), so it remains to determine their dimensions. To this end,
we note that every set Op, (o) is equal to the image of the smooth map

Vg, 0 Gl(n,C) = Cy (5.8.8)
A A7'B, (0)A.

Its derivative at A € Gl(n, C) in the direction of V' € Mat(C,n) can be eval-
uated relatively easily by precomposing with the curve t — exp(tVA™1)A,
which goes through A with velocity V. We get

d —
TA\Ian,p(O)(V) = T 'I’Bn‘,,(o)(exp(tVA 1)A) (5.8.9)
t=0
= % 14*1 eXp(*tVAil)Bnyp(O) exp(tVAfl)A
t=0

=AYB,,(00VA™ —VA'B, (0)A
= A"B,,(0),VA A.

By varying V, we see that Im(TaVp, (o)) = Im(A~*[B,,(0), 8]A). Conse-
quently, we have that

dimIm(Ta¥p, () = dimIm(A~'[B, ,(0), o]A) = dimIm([B,, ;,(0),e]),

which is independent of A. Hence, the map ¥, seen as a map from GI(C,n)
to the manifold Op, (o), is a surjective, smooth map whose derivative has
constant rank. Moreover, it is known that any smooth, surjective map of
constant rank between two manifolds is a submersion (see [14]). Hence, the
dimension of Op, (o) is equal to the dimension of Im([B,, ,(0), e]), which is
equal to n? —n for p = (n) and strictly less in all other cases. This proves
the theorem. O

Theorem 5.8.4. The set of matrices in CL with purely imaginary spectrum
is composed of finitely many conjugacy invariant embedded manifolds of real
dimension 2n° —n or lower. Ezactly one of these manifolds has dimension
equal to 2n% — n.

Before we can prove Theorem [5.8:4] we need another lemma. It provides
a special local chart for any conjugacy orbit. To simplify notation, we will
introduce yet another way of denoting a Lie bracket, namely adx (V) :=
[X,Y] for X,Y € Mat(C,n) .
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Lemma 5.8.5. For X € Mat(C,n), let U,V C Mat(C,n) be two complex
linear spaces such that

U®Imady =V @ keradx = Mat(C,n).

Then there exist open neighborhoods Wy C U and Wy C V', both containing
0, and W C Mat(C,n) containing X such that the map

X Wy x Wy = W (5.8.10)
(u,v) = exp(—v)(u + X) exp(v)

is a diffeomorphism. Wy, Wy and W can furthermore be chosen such that
OxNW = X({(u,v) € Wy x Wy | u=0}).

Proof. The proof goes in three steps.

Step 1: We first prove that Wy, Wy, and W exist such that X restricts to
a diffeomorphism as in the first part of the theorem. To this end, we first
define X' as a map from the whole of U x V to Mat(C,n), again given by
X (u,v) = exp(—v)(u + X) exp(v). We see that X'(0,0) = X. Furthermore,
the derivative at (0,0) in the directions of (ug,0) and (0,vq) are given by

d
pr exp(0)(tup + X) exp(0) = ug (5.8.11)
t=0
and
d
7 exp(—tvg)(0 + X) exp(tvg) = adx (vo), (5.8.12)
t=0

respectively. As V @keradyx = Mat(C,n), we see that {adx (vg) | vg € V} =
Imadyx. From U @ Imadx = Mat(C,n), we may then conclude that the
derivative of X' at (0,0) is a surjective map. Furthermore, as the dimension
of U@V is equal to that of Mat(C,n), we may conclude that the derivative
is in fact a bijection. The result of the first step now follows from applying
the inverse function theorem to X.

Step 2: Next, we argue that there exists an open neighborhood Sy C V

containing 0 so that for any open Ty, C Sy containing 0 there exists an open

R C Mat(C, n) containing X with the property that Ox N R =

{exp(—v)X exp(v) | v € Ty }. To this end, we define the map
Y:V@keradx — GI(C,n) (5.8.13)

(v,8) — exp(s) exp(v) .
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This map clearly sends (0,0) to Id. Furthermore, identifying the tangent
space of GI(C, n) with Mat(C,n) =V @ keradx, we see that the derivative
of Y at the point (0,0) is exactly given by the identity. Hence, there exist
open neighborhoods 03> Sy C V, 0> M C keradx and Id 5 N C GI(C,n)
so that ) restricts to a bijection from Sy x M to N. As a result, given
Ty C Sy we have that ) restricts to a bijection from Ty x M to the open
set N := Y(Ty x M). If Ty furthermore contains 0 then N’ contains Id.

Now, recall from the previous section that Ox is an embedded submanifold
of Mat(C,n). Furthermore, exactly as in the proof of Theorem [5.8.3] the

map

Ux :Gl(n,C) — Mat(C,n) (5.8.14)
A ATIXA

defines a surjective submersion onto Ox. As a submersion is an open map,
and as the topology on any embedded submanifold coincides with its in-
duced topology, we see that there exists an open set R containing X so that
Ux(N') = Ox N R. Writing out Ux(N') we get

Ux(N)={A"'XA|Aec N} (5.8.15)
= {exp(—v) exp(—s)X exp(s) exp(v) | (v,8) € Ty x M}
= {exp(—v)X exp(v) | v € Ty },

where in the last step we have used that M C keradx. More specifically,
s € M gives that s commutes with X. Therefore, so does exp(s). We see
that indeed Ox N R = {exp(—v)X exp(v) | v € Ty}, thereby proving the
second step.

Step 3: To conclude, we show that Wy, Wy and W can be chosen small
enough such that Ox NW = X({(u,v) € Wy x Wy | u = 0}). First, choose
Wy, Wy and W as in the first part of the theorem. That is, any element
w of W can be uniquely written as w = X(u,v) = exp(—v)(u + X) exp(v)
for some (u,v) € Wy x Wy. Next, let Ty := Wy NSy C Sy, where Sy is
determined in step 2. It follows that there is an open set R so that

Ox NR = {exp(—v)X exp(v) | v € Ty }. As Ty is contained in Wy, we see
that {exp(—v)X exp(v) | v € Ty} C {exp(—v)X exp(v) | v € Wy} C W.
Therefore, we may assume that R lies in W. Finally, choose W[, C Wy,
Wi, C Wy and W’ C W such that the first part of the theorem applies to
the triple W, W{, and W', and such that W’ C R. We claim that this
new triple satisfies Ox N W' = X({(u,v) € W/, x W{, | v = 0}). Any
element of the right hand side is of the form X(0,v) = exp(—v)X exp(v),

188



5.8. GEOMETRY; COUNTING DIMENSIONS

and is therefore clearly contained in Ox (as well as in W’). Conversely, we
pick an element w € W'. It follows that w may be written as w = X (u,v)
for w € W/, and v € W{,. If we furthermore assume that w € Ox, then
since W/ C R we may also write w = exp(—v') X exp(v') = X(0,v") for some
v € Ty. However, as W[, C Wy, W{, C Wy and Ty C Wy, we see that
w = X(u,v) = X(0,v") € W can apparently be written in two ways as the
image of X restricted to Wy x Wy,. This can only be true if v = 0 and
v =v" € W{,. Hence we conclude that Ox N W’ C X({(u,v) € W[, x WY, |
u = 0}). From this we see that the two sets are in fact equal. This proves
the lemma. U

Next, we will describe the sets and matrices that will eventually parametrize
the manifolds in Theorem [(5.84

Definition 5.8.6. Let P(n) denote the set of partitions of n. Given any
partition p = (s1,...,sk) € P(n), we may make a sub-partition by assigning
elements p; € P(s1),...,pk € P(sk). All the possible ways of doing this are
captured by the set

En i =A{@ip1,- o) [p= (51, 8) € P(n), pi € P(si) Vi€ {1,...,k}}.

Note that Z,, is a finite set, as we have #=,, < (#P(n))"+L.
Given an element & = (p;p1,...px) € 2y, we will define the set V¢, given by

Ve = {(z1,...,21) ER* | m; # x; for i # j}.

Note that V¢ is an open subset of RE. The definitions of =, and Ve will
serve to parametrize all matrices in CZ with a purely imaginary spectrum.
In particular, given { = (p;p1,...px) € Z, and x = (z1,...,2%) € Ve, we
define the complex n X n matrix

le’pl ((Ell) 0 N 0
0 By , (3722) . 0
Be(x) = . ) , (5.8.16)
0 0 lempk (ka)

for i the complex unit. We will also define the matrix Be(0) to be the matrix
in (5.8.16)) with z; = -+ = 2 = 0 (even though 0 € R is clearly not an
element of V¢ for k > 1).

The following lemma gathers up some facts about the matrices Be(x) needed
to prove Theorem [5.8:4]
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Lemma 5.8.7. Given £ = (p;p1,...px) € 2, and z,y € V¢, it holds that

Im(ang(w)) = Im(ast(y)) (5817)
ker(adBE(I)) = ker(ang(y))
Im(ast(O)) C Im(ast(m)) .

Furthermore, we have that
dime Im(adp, (2)) < n?—n, (5.8.18)

with equality only when p; = (s;) for alli € {1,...,k}. Lastly, if a matriz

21 1ds, xs, 0 0
0 ) Id52><52 0
I,(2) = ) , (5.8.19)
0 0 Zk Idskak
for z = (z1,...,21) € CF lies in Im(adp,(y)), then 21 = - -+ = 2z = 0.

Proof. Given X € Mat(C,n) we write X = (X, ;), 1 <14,j < k, with respect
to the block decomposition of the matrix ([5.8.16)). Whenever i # j, we see
that

(adp, (2)(X))i,j = [Be(2), Xli,j = Bs, p; (2i1) Xi j — Xi, 3 Bs; p; (259)
(5.8.20)

=—Lp,, . (0;1),B.; 0 @:0)(Xi) -

As z; # x;, it follows from Lemma [5.4.4] that the operator

L By, (251),Bs, p, (249) is a bijection. Hence by choosing X; ; appropriately,
any value of the block (Lp,(s),B,(c)(X))i; can be attained. Likewise, it
holds that

(adg(2)(X))j5 = LBy, 1, (250).Ba, oy (y0) (Xj5) -

By Lemma the image and kernel of £ Buj . (€70),Ba; p, (a;1) AT€ indepen-
dent of xji. Therefore, the image and kernel of adp, (,) are independent of
z € Ve. We also conclude from this that the image of adp, (g is contained
in that of adp, (4), as the image of these operators is the same in every (4,7)
block entry and because adp, () is bijective in the other block entries. Next,
we note that the dimension of the image of (adp, (2)(X));,; is equal to s7 —s;
when p; = (s;) and strictly less otherwise. This proves that

dimIm(Lp, ()5, () <1° —n, (5.8.21)
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with equality only when p; = (s;) for alli € {1,...,k}. Finally, it holds that
tr((LBe(2),Be (o) (X))j.5) = tv([Xj5, Bs; p; (751)]) = 0, (5.8.22)

forall j € {1,...,k} and X € Mat(C,n). From this it follows that I,(z) can
only be in the image of Lp, (2),B,(x) When z = 0. This finishes the proof of
the lemma. U

The statement that p; = (s;) for all i € {1, ..., k} can be put more succinctly
as the statement that the characteristic polynomial of Be(x) is equal to its
minimal polynomial. It is not hard to see at this point that this condition
on a matrix is equivalent to it having an adjoint orbit of maximal dimension

n? —n. See also 23]

Lastly, we will use the following lemma.

Lemma 5.8.8. Let {A;}F_ | and {B;}}_, be two sets of matrices, where
A;, B; € Mat(C, s;) for some numbers s;, 1 < i <k. Setn :=s; + -+ sp
and define A and B to be the n x n block diagonal matrices with blocks the
matrices {A;}e_| and {B;}f_,, respectively. Suppose the eigenvalues of A;
and B; are the same for all i, that A; and A; do not share any eigenvalues
for i #£ j and that A and B are conjugate. Then, A; and B; are conjugate
for all i.

Proof. Both A and B can be seen as block diagonal matrices with just two
blocks, by taking the first block to be A; or By and the second block to
contain all the other A; or B;. As these two blocks also satisfy the conditions
of the lemma, we see that we may assume that £ = 2. An induction argument
then finishes the proof. Therefore, let X be an invertible matrix such that
A= X"'BX, or equivalently, XA = BX. Writing X = {X; ;}, i,j € {1,2},
with respect to the block structure of A and B, we see that X; 0 4s = B1 X 2.
In other words, we have L4, p,(X12) = 0. However, as Az and By do
not share any eigenvalues, we conclude from Lemma that X; 2 = 0.
Likewise, we see that X5 ; = 0. Since X is invertible, we conclude that both
X1,1 and Xy o are invertible. Hence, it follows that A; = lellBlX171 and

Ay = X2T2lBQX2’2. This proves the lemma. O

Proof of Theorem[5.87} It follows from the definitions of Z,, and V¢ that any
matrix with purely imaginary spectrum is conjugate to at least one matrix
Be¢(x) with o € V¢. Therefore, our manifolds will be the sets

O = {A_lBg(ac)A | Ae GI(C,n), z € Ve},
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for € = (p;p1,...pr) € En. These sets are not necessarily disjoint. For exam-
ple, if p € P(4) is given by p = (2,2), then & = (p; p1,p2) and &' = (p; p2, 1)
will define the same sets O = Og for all pi,ps € P(2). However, this is
the only thing that may happen; as soon as O¢ and O share an element,
they coincide as sets. We may therefore assume these sets are disjoint after
discarding doubles.

To show that they are indeed embedded submanifolds of the proposed di-
mension, we fix a matrix Be¢(z). As in Lemma let U,V C Mat(C,n)
be two complex linear spaces such that

U & Im ang(x) =V & ker adBS(I) = Mat(C,n).

By the proof of Lemma [5.8.7] we may assume that all elements of U are
block diagonal matrices with respect to the structure of Be(z) into k blocks.
Furthermore, we may assume that I,(z) is an element of U for all z € C*.
Let Wy Cc U, Wy C V and W C Mat(C, n) be open sets as in Lemmam
applied to Be(x). We may assume that Wy is small enough so that for all
I,(z) € Wy it still holds that Be(z) + I,(z) has different diagonal entries
among its k blocks. Now, the set

{exp(—v)(Be(z) +1p(2)) exp(v) | v € Wy, I,(2) € Wy, 2z € (iR)k} cw

is readily seen to be contained in W NO¢. Hence, if we can show that equal-
ity holds for these two sets then we have proven that O¢ is (around Be(x))
an embedded submanifold of real dimension k + 2dimc (V). Note that V
may be chosen the same for all z € V¢. As any element of O is conjugate
to some element Be(x), we would conclude by homogeneity of O that O is
an embedded submanifold.

Therefore, let us assume that for any open set S C W around Be¢(x) there is
an element in S N O that is not of the form exp(—v)(Be(z) + I,(2)) exp(v)
for v € Wy, I,(2) € Wy and with z € (iR)*. We will show that this leads
to a contradiction. From the assumptions on Be(x) we get a sequence of
matrices (X,)22, such that

1. Tlg)élo X, = Be(x).
2. X, is conjugate to B¢ (z") for some z" € V.

3. Every X, is not of the form exp(—v)(Bg(z)+1p(2)) exp(v) for v € Wy,
I,(2) € Wy and with z € (iR)*.

Since X, € W for all 7, we may write X, = exp(—v,)(Be¢(x)+u,) exp(v,) for
vr € Wy and u, € Wy, As the limit of X, equals Be(x) = exp(0)(Be(z) +
0) exp(0), it follows that
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1. lim u, =0.
T—>00

2. Be¢(x) + u, is conjugate to Be(a") for some 2" € V.

3. lim v, =0.
r—00

Note that every u, is a block diagonal matrix, as it is an element of U.
Therefore, so is Be(z) + u, for all . We will denote the individual blocks
by (Be(x) 4+ ur); = Be(x); +ul = By, p, (i) + i for 1 < j < k. Now, the
limit of all the eigenvalues of (B¢ () +wu,); is 2ji. Hence, as per assumption
xj # x; for j # |, we may conclude that for r big enough, the blocks
(Be(z) + up); and (Be(z) + uy); do not share any eigenvalues if j # [. On
the other hand, the eigenvalues of Be(x) + u, are equal to those of Be(z"),
as these matrices are conjugate. It follows that the eigenvalue z7i, which
appears with algebraic multiplicity s;, appears with the same multiplicity in
exactly one of the blocks of B¢ (z) +u,. Therefore, every block of Be(x) +u,
has exactly the same eigenvalues as some block of B¢(z"). More precisely,
for every r there exists a permutation o, € Sy so that (Be¢(z) + w,); and
Be(2")5,(j) = Bs,,(;)per) (To, ;1) have the same eigenvalues. It therefore
follows from Lemma at

(Be(r) + u,); is conjugate to Be(x"),, (5) for every j.

Next, by comparing traces and by noting that the limit of (Bg¢(z) + u,); is
Be(x);, we see that
lim zj ;) =a;. (5.8.23)

r—oo T

We will use the facts we have gathered so far, together with the fact that
the orbit of B¢(0) is an embedded manifold, to arrive at a contradiction. To
this end, we look at the expressions ul + (z; — zy (j)ilds;. From
we see that

L lim vl + (2, — Ty (5))ilds; = 0.

r—00
2. BE(O)]-—i—u{;—i—(xj—x;(j).)iIdsj = (Be(@)+ur)j—ay  ;yilds, is conjugate
to Bf(xr)ar(j) — x;r(j)’LIdsj = BE(O)H’V‘(j) .
In part 2, we have simply used the fact that if two matrices A and B are
conjugate, then so are A + zId and B + zId for any z € C. If we define

y" € CF by y; = (x — mgT(j))i for 1 < j < k, then we get for the full
matrices

1. rhﬂnolo ur + Ip(y") = 0.
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2. Be(0) + u, + I, (y") is conjugate to Be(0).
Note that u, + I,(y") € U for all r.

Finally, let U, VC Mat(C,n) be two complex linear spaces such that

U®lImadp, ) =V @ keradp, (o) = Mat(C, n).
From Imadp, (o) C Imadp, () we see that we may choose U such that U c U.
We furthermore choose open sets Wy, Wy and W as in the statement of
Lemma so that Op, (o) N W = X({(u,v) € W x Wy | u=0}). Now,
for large enough values of r, the matrices B¢ (0) + u, + Ip(y") will lie in W.
Therefore, since Be(0) + u, + I,(y") € Op, (o) and u, + I,(y") € U C U, it

has to follow that w, + I,(y") = 0 for large enough r. Going back to X, we
see that

X, = exp(—v,)(Be(x) + uy,) exp(vy) (5.8.24)
= exp(—v;)(Be(z) + Ip(=y")) exp(vr)

with y7 := (z; —a ;)i so that y" € (iR)*. This is a direct contradiction
to the third assumption on X,..

Hence, there does exist an open set S € W around Bg(x) where every element
of O is of the form exp(—v)(Be(x) + Ip(2)) exp(v) for v € Wy, I,(z) € Wy
and z € (iR)*. In particular, we may choose W{, C Wy, W{, C Wy and
W’ C S CW as in Lemma[5.8.5 for Be(x). Then

OcnW' = {exp(—v)(Bg(2)+1y(2)) exp(v) | v € Wiy, Iy(2) € Wiy, z € (iR)"}

as this otherwise contradicts the unique expression as X' (u,v) in W.

We see that the real dimension of O¢ is k + 2dimc(V). This value cannot
exceed 2n? — n, in which case k = n and dim¢(V) = n? — n. By Lemma
this is indeed the case when & = ((1,1,...,1);(1),...,(1)). This is
furthermore the only possibility, as k = n forces the partitions in £ to be
trivial. This concludes the proof. O

Remark 5.8.9. Note that the manifold of Theorem of highest dimen-
sion consists of exactly those matrices with n distinct (purely imaginary)
eigenvalues. Another observation is that both the matrices of Theorem [5.8.3]
and of Theorem are invariant under taking the (component-wise) com-
plex conjugate. This is exactly the transformation that would occur if one
would choose [Id],[—I] € End(U)/Nil(U) as the generators of the complex
structure, instead of [Id] and [I]. See Subsection [5.5.4] A
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5.8.2 The Case R”

For RY = Mat(R,n) we have the following results.

Theorem 5.8.10. The set of all nilpotent matrices in RY consists of a finite
number of conjugacy invariant embedded manifolds. Ezxactly one of these has
real dimension n? — n, whereas the others have dimension strictly less.

Theorem 5.8.11. The set of all matrices in RE with a purely imaginary
spectrum consists of a finite number of conjugacy invariant embedded mani-
folds. Fzactly one of these has real dimension n? — [ 5], whereas the others
have dimension strictly less.

These results will follow from the analogous results for Cf'. An important
ingredient here is the following lemma.

Lemma 5.8.12. Let A C Mat(C,n) be a real subalgebra of matrices such
that

Mat(C,n) = Ad iA

as real vector spaces. Let A, B € A be two conjugate matrices. Then they are
also conjugate using an element in A. More precisely, if there exists an X €
GI(C,n) such that A = XBX ™1, then there also exists a C € AN GI(C,n)
such that A = CBC~'. Moreover, writing X = X; +iXs for X1,Xo € A
and choosing € > 0, C' can be chosen such that ||C — X1||< €. Here, ||-||
denotes (for example) the matriz norm, || X||?:= tr(XTX).

Proof. Write X = X; +iX» for X1, Xs € A. From A = XBX ! it follows
that AX = X B, and hence that AX; +iAX; = X1 B + iX>B. Comparing
parts in A and A, we see that both AX; = X;B and AXy; = X5B hold.
In particular, for any A € R it holds that A(X; + AX2) = (X7 + AX2)B.
Therefore, it remains to show that X; + AXs € A is invertible for arbitrarily
small values of ), in which case we set C := X7 + AX5. To this end, consider
the polynomial in A given by det(X; + AX2). This polynomial cannot be
identically 0, as we have det(X; + iX2) = det(X) # 0. Therefore, there are
only finitely many values of A for which det(X;+AX5) = 0. We conclude that
there are real values of A arbitrarily close to 0 for which det(X; + AX32) # 0.
If Xo =0 weset C = X; = X. Otherwise, choose 0 < A < ¢||Xo||7?
and such that det(X; + AX2) # 0. Then setting C' := X; + A X5, we have
|C — X1]|= || X2]|< €]| X2|| || X2||= €. This proves the lemma. O

Proof of Theorem[5.8.10, Just as in the case of C', our manifolds will be
the conjugacy orbits of the elements B,, ,(0) for p € P(n):

95, ,0) = {ABnp(0)A™" | A€ GI(R,n)}.
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Equivalently, Qp, (o) is the image of the map A € GI(R,n) — AB,, ,(0)A71,
which has constant rank equal to dimg Im(adp,, ,(0)|Mat(R,n))- Since By, ,(0)
is a real matrix, it follows that

Im(adp, ,(0)IMat(c,n)) = Im(adp, ,0)|Mat(r,n)) @i Im(adp, ,0)IMat(n)) -

From this we conclude that dimg Im(adp,, , (o) |Mat(®,n)) < n* —n, With equal-
ity only when p = (n). Therefore, it follows that every Qp, (o) is an im-
mersed submanifold of the proposed dimension. In particular, there exists
an open set S C GI(R,n) containing Id such that {AB, ,(0)A~! | A € S}
is an embedded submanifold of dimension dimg Im(adg, ,(0)|Mat(r,n)) con-
taining B, ,(0). It remains to show that for a small enough neighbor-
hood T' C Mat(R,n) containing B,, ,(0), any element in Qp, o) N7 lies
in {AB, ,(0)A~! | A € S}.

Assume the converse. Then there exists a sequence of elements X, €
g, 0 \ {AB, ,(0)A™" | A € S} such that lim X, = B,,(0). This
P ? r—00 ’

same sequence then exists in Mat(C,n). Applying Lemma we find
open neighborhoods Wy C V containing 0 and W C Mat(C,n) contain-
ing B, (0) such that any element of Qp oy "W C Op, oy NW can
be written as exp(—v)B,, ,(0) exp(v) for v € Wy. Here, V is a complex
linear space satisfying V' & keradp, ) = Mat(C,n). We therefore write
X, = exp(—v,)B; (0) exp(v,) for large enough r. It also follows from
Lemma that Tlggo X, = By p(0) implies 7151010 v, = 0. Hence we have
that rlggo exp(—v,) = Id. By applying Lemma W with A = Mat(R, n),

we find matrices C, € Mat(R,n) such that X, = C, B, ,(0)C,"1. As (the
real part of) exp(—v,) goes to Id, we may arrange for the C, to have the
same property. However, then for big enough r we find that C,. € S, con-
tradicting that X, ¢ {AB, ,(0)A~" | A € S}. We conclude that Qp, (o) is
an embedded manifold around B, ,,(0), and hence by homogeneity globally.
This proves the theorem. O

To prove Theorem [5.8.11] we will first introduce the matrices that serve
to label the relevant manifolds. Given m € N, let ¢ € =, be given by
& = (p;p1,.-.p1)- Recall that this means that p = (s1,...8) € P(m) is
a partition of m in [ numbers, whereas each p; is an element of P(s;) for
1 < i <1. We define the open set

We ={z €R" | z; > 0,2; # x; for all 4,5 € {1,...1} such that i # j}.
(5.8.25)
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Next, we fix a number n € N. Given m € {1,...[§]}, { € E,,, v € W¢ and
q € P(n — 2m) we furthermore define the n times n matrices

Bg({L‘) 0 0
Dneg(x):=| 0  Bela) 0 (5.8.26)
0 0 B —2m (0)
Be(x) 0 0
=| 0 Be(-a) 0 . (5.8.27)
0 0 By_a2m.4(0)

Note that D,, ¢ 4(z) is conjugate to Bg/(y) for some choice of & € =, and
y € Ve with entries those in z, in —z and possibly 0. This conjugation can
be done by a permutation matrix that depends only on £ and m and is just
an artifact of our convention to have permutations ordered. We also define
the n times n matrices

Id,, ild, 0
T = |ildy  1d, 0o . (5.8.28)
0 0 Idy_om

These have the property that for any complex matrix X of the form

Y 0 0
X=(0 Y o], (5.8.29)
0 0 W

where Y is a complex m times m matrix and W is a real n — 2m times

n — 2m matrix, the matrix Z, ,, X Z, ], is real (i.e. has real entries). Lastly

for € = (p;p1,...p) € Zm and z € C', we define the matrices

Iz) 0 0
I (2) == 0 Iy(z) Of. (5.8.30)
0 0 0

Proof of Theorem[5.8.11. Note that every real matrix with a purely imagi-
nary spectrum is either nilpotent, or contained in one of the sets

Q¢ q ={AZpmDneq(x) 2,1, A" | A€ GI(R,n),x € W} C Mat(R,n).

Here we have £ € Z,,, and ¢ € P(n — 2m), where m may furthermore vary

from 1 to LgJ It can again be seen that two sets Q¢ , and Q¢ 4 are either

the same or disjoint. The set Q¢ 4 is equal to the image of the smooth map
Ve o0 GI(R, n) x We — Mat(R, n) (5.8.31)
(A, @) > AZp D e g(x) 2 1 AT
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We will first show that this map has constant rank, thereby showing that
its image is an immersed manifold of the proposed dimension. After that,
we show that it is an embedded manifold, by comparing to the complex case
similarly to what we did in the proof of Theorem [5.8.10)

We fix a point (4, z) € GI(R, n) x We and a direction (V,w) € Mat(R, n)®R".
A curve through (A4, z) with velocity (V,w) is then given by

t s (Aexp(tA~1V),z + tw) and we find

Tiaa) Ve q(V,w)
fdi Aexp(a” W) Zpy Do g + tw) Z3 ), exp(—tA1V) AL
A[A 1V ZpanDug,q(€) 2y 1 JA™" + AZy e (iw) 2, A7F

(5.8.32)

As conjugating by A does not change the dimension of a space, and as
A~V varies over the real matrices as V does, we see that the rank of the
linearization is independent of A. We therefore set A equal to the identity.
It remains to determine the dimension of the real space

{[‘/’ Zn,mDn,f,q(l")Zn m] + Zn mI (Zw)Zn m | Ve Mat(R,n), CURS Rl} .
(5.8.33)

First suppose a matrix B is both of the form Z, ,,I¢(iw)Z, |, for some
w € R" and of the form [V, Zy yDn ¢ q(x)Z, 1,] for some V € Mat(R7 n).
Then Z;,}RBZ,M,L is a complex matrix that can be written as I¢(iw) and
as [V', Dy ¢ q(z)] for some V' € Mat(C,n). This is a contradiction to the

fact that the diagonal blocks of any element of the form [V’, Dy, ¢ 4(x)] have
vanishing trace unless w = 0 and hence B = 0 (compare to the proof of

Lemma . We conclude that the space in (5.8.33)) is a direct sum of its

two components. Clearly we have that the real dimension of
{Znmle(iw)Z, ), | w € RY}

equals . Furthermore, as meDn?g,q(x)Z,;}n is a real matrix, we have that
the real dimension of

{[‘/7 Zn,mDn,ﬁ,q( ) n, m] | Ve Mat(IR{ n)}
is equal to the complex dimension of

{IV, ZnmDn.e.q(@)Zy 1) | V € Mat(C,n)} .
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This latter space has the same complex dimension as the space
{[V. Dngq(2)] |V € Mat(C,n)}

which we know from Lemma to be independent of z, and furthermore
at most equal to n? —n (recall that D,, ¢ ,() is conjugate to Be(y) for some
& €=, and y € V). By the constant rank theorem, every set Q¢ , is an
immersed manifold of real dimension at most n® —n + [%] = n® — [%].
Furthermore, to get this exact number, we need to have that m = [ 3| and
that & = ((1,...1);(1),...(1)) € E,,. This also fixes ¢ to be either (1) (if n
is odd) or empty, (if n is even). In both cases all eigenvalues of D,, ¢ ,(x) are
different, and we see that the dimension of the image of its adjoint operator
is indeed equal to n? — n. We conclude that the maximal value of n® — [Z]
is attained in exactly one case. Note that the dimension of any nilpotent
orbit is at most n? — n, which is less than n? — [%] for n > 1. If n = 1 then
the nilpotent matrices are the matrices with a purely imaginary spectrum,
both sets being equal to {0}.

Next, we prove that Qg , is in fact an embedded manifold of Mat(R,n). To
this end, we fix x € W;. By the constant rank theorem, there exist open
neighborhoods S C GI(R,n) containing Id and T" C W, containing x such

that
{Weq(Ay) | A€ S,y e T} C Mat(R,n)

is an embedded manifold of real dimension equal to the rank of the deriva-
tive of W¢ ,. It remains to show that for S and T sufficiently small, there
are no other elements of Q¢ , nearby. Assuming the converse, we get a se-
quence of real matrices (X;)p2 in Q¢ ¢ limiting Zy m D ¢,q(%)Z,, , that are
not in this embedded manifold. Pick a permutation matrix P such that
PD, ¢ 4(x)P™! =: Be(y) for some ¢ € Z,, and y € Ve. This permutation
matrix just reorders the blocks, so that their sizes are decreasing. We define
Y, = PZ;}anZn,mP*I, so that the limit of Y, is equal to Be (y). Note
that the Y, may not be real matrices anymore. From the Jordan normal
form we see that Q¢ 4 C Og. Therefore, X, describes a sequence in O¢/. By
conjugacy invariance of O, so does Y;.. By the conclusion at the end of the
proof of Theorem we see that we may write

Y, = exp(—v,) (Ber(y) + I (")) exp(v,) (5.8.34)

for certain complex matrices v, and with 2" € (iR)¥. Here, k is determined
by & = ((s1,.--8k);P1,---pk)- It furthermore holds that lim v, = 0 and
r—00

lim z" =0.
T—> 00
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Our next step is to show that for sufficiently large values of r, the ma-
trices P~ (Bg/(y) + I¢(27))P are of the form D, ¢ (z") for some z" €
We. 1If this holds, then the matrices Zy P~ (Be (y) + Ier(27)PZ, 3, =
Zn,mDne.q(x")Z, , are real. As they are furthermore conjugate to the real
matrices X,., we conclude from Lemma that this conjugation can be
done by real matrices as well. We will then finish the proof by showing that
this leads to a contradiction.
To show that the matrices P! (Bg/ (y)+I¢ (")) P are of the form D,, ¢ 4(z"),
we need to show that the eigenvalues in the different blocks of Be/ (y)+1I¢/ (2")
satisfy a property that states which pairs of blocks have eigenvalues with op-
posite sign. Motivated by this, we say that an element v € C* satisfies the
real-property if there exists a function 7 : {1,...k} — {1,...k} such that
vj = —v,; for all indices j. Note that the eigenvalues in the blocks of
Bei(y) + Ie(2") have this property, as they are conjugate to the real ma-
trices X, € Og. Likewise, y € Ve C CF* has the real-property, for some
involution 7. In fact, there is only one function from {1,...k} to itself for
which y has this property. For, if 7 is another, and we have 74(j) # 71(j)
for some index j, then y. ;) = —y; = yr,(j)- However, as the entries of y
are just those of x € We, minus those and perhaps 0, the entries of y are
all different. This shows that such a j cannot exist, and therefore that 7y is
unique. The same therefore holds for iy
Now, all the elements in C¥ that satisfy the real-property form a set that is
the union of a finite number of hyperplanes. These hyperplanes are indexed
by all the possible functions from {1,...k} to itself, and are all of a strictly
smaller dimension than CF. Since iy lies in exactly one such hyperplane,
its distance to the other hyperplanes is strictly positive. Therefore, as the
elements iy + 2" have the real-property and limit ¢y, they too will lie in
the hyperplane indexed by 7y for large enough values of r. This shows that
for large enough values of r, the eigenvalues of Be/(y) + I¢/(2") are paired
correctly, and we may write P~ (Be/(y) + I¢/(27))P = Dy, ¢ o(z") for some
z" e W&.
Returning to the X,, we have

X, = ZpmP " exp(—vp)(Ber(y) + Ie (27)) exp(ve) PZ,, 1, (5.8.35)

= ArZnmP ™ (Be (y) + Ie (") PZ, 5, AT
= Aan,mDn,f,q(xT)Z'r;}nA;l )

for A, := Zp P71 eXp(—vT)PZg,}n. As v, goes to 0, we see that the limit
of A, is the identity. By Lemma there exist real matrices C,. such
that

X, =CyZnmDung ()2, 1,Ct =g ((Cy, 2, (5.8.36)

n,m--'r
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with furthermore lim C, = Id. Since it also holds that lim xz, = x, we see
500 r—00

T
that (C,,z,) € S x T for large enough r. This contradicts our assumption,
and hence Q¢ is locally around Z, ., Dy ¢ q(%)Z, ), an embedded mani-

fold. By homogeneity, it is globally an embedded manifold. This proves the
theorem. O

Note that it follows from the proof of Theorem [5.8.11] that the unique ma-
nifold of highest dimension consists exactly of those matrices with no double
eigenvalues.

5.8.3 The Case HY
Recall that

WP = {(_‘X;/ §) XY € Mat((C,n)} C Mat(C,2n)  (5.8.37)

satisfies Mat(C,2n) = HL @ iHL as real vector spaces. Recall also that

HP = {Z € Mat(C, 2n) such that SZ = ZS}, (5.8.38)
for
0 1d,
S = (—Idn 0 ) . (5.8.39)
This matrix satisfies S = —Idy,. Our aim is to prove the following theo-
rems.

Theorem 5.8.13. The set of all nilpotent matrices in HY consists of a finite
number of conjugacy invariant embedded manifolds. Ezxactly one of these has
real dimension 4n® — 4n, whereas the others have dimension strictly less.

Theorem 5.8.14. The set of all matrices in HE with a purely imaginary
spectrum consists of a finite number of conjugacy invariant embedded man-
ifolds. Exactly one of these has real dimension 4n?> — n, whereas the others
have dimension strictly less.

The following lemma will enable us to describe those elements in HZ with
a vanishing or purely imaginary spectrum. This result is known, see for
example [25], but a relatively short proof is given for completeness. The
techniques used in the proof below are known to experts, but can be hard
to find in the literature.
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Lemma 5.8.15. Any element of HY is conjugate to an element of the form

(]g ](\)[) . (5.8.40)

Here, N is a complex matriz in Jordan normal form. Note that the matriz
of (5.8.40)) is an element of HE. Thus, in essence, the Jordan normal form
of an element in HE is again in HE.

Proof. Let Z be an element of HZ. We will show that the Jordan blocks of
Z corresponding to an eigenvalue A € C \ R are exactly the same as those
corresponding to \ (albeit complex conjugate), whereas those corresponding
to an eigenvalue p € R come in pairs. By permuting the Jordan blocks we
can then arrange for Z to be conjugate to an element of the form .

To this end, let A € C\ R be a complex eigenvalue of Z. Without loss of
generality, we may assume that the dimension of the generalized eigenspace
of \ is at least that of its complex conjugate A. Let {e1,...e,,} C Mat(C,2n)
be a set of linearly independent vectors spanning the generalized eigenspace
of A\. Assume furthermore that Ze; = Ae; and Ze; = Ae; + s;e;—1 for i # 1
and with s; € {0,1}. In other words, {e1,...em,} put Z, restricted to the
generalized eigenspace of A, in its Jordan normal form. We then have that

Z(Ser) = SZey = Sher = \(Sey), (5.8.41)
and likewise
Z(Se;) = SZe; = S(\&; + sieic1) = MS&) + 5;(Sei 1) (5.8.42)

for all other i. Hence, if we can prove that the set {Sey, ... Se,} is a basis
for the generalized eigenspace of X then the Jordan blocks do indeed agree.
As we assumed that the dimension of the generalized eigenspace of A is at
least that of A, it suffices to check linear independence of {Set,...Se,,}.
Therefore, write

> aiSe =0 (5.8.43)
i=1

with a; € C. Applying S and taking the complex conjugate yields
> e =0. (5.8.44)
i=1

As the e; are linearly independent, we see that —a; = a; = 0 for all 5. Hence,
the Se; are linearly independent as well.
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Next, let ¢+ € R be a real eigenvalue of Z. As the statement of the lemma
holds for Z if and only if it holds for Z — p11ds,,, we may assume that p = 0.
We will need that the kernel of Z is always even dimensional. To show this,
let e; be a non-zero element of the kernel of Z. It follows that Sey in also
in the kernel of Z. Furthermore, Séy and e; are linearly independent, as

ae; + b(Sey) =0, (5.8.45)

for a,b € C implies

S(ae; + bSer) = aSe; —be; =0, (5.8.46)
and so
a(Sey) —bey =0. (5.8.47)

Note that S = S. Combining expressions (5.8.45) and (5.8.47)), we find
0 = @lae; + b(Ser)] — bla(Ser) — ber] = (|a|*+[b|*)e; - (5.8.48)

Hence, we have that a = b = 0. Next, assume that

W := spang(ey, Seq, ... €m, S€rn) is a 2m dimensional subspace of the kernel
of Z. Suppose f is a nonzero element that is in the kernel, but not in W.
Then S is also in the kernel. If furthermore we have

w+af+b(Sf)=0, (5.8.49)
for some w € W and a,b € C, then we get
0 =alw +af + b(Sf)] — b[Sw +aSf — bf] (5.8.50)
= (@w — bSwW) + (|a]*+[b]?)f . (5.8.51)
Because Sw € W, we see that aw—bSw € W. Hence, it holds that a = b =0
and w = 0. This proves that the kernel has to be even dimensional.
Finally, let Q,, denote the number of times B,,(0) appears in the Jordan

normal form of Z. Let [ denote the highest number such that @Q; is odd. If
[ =1 then we see from

dim(ker Z) = Q1 + ... Qan , (5.8.52)

that dim(ker Z) has to be odd, contradicting our previous result. Likewise,
I = 2n leads to the contradiction dim(ker Z) = 1. For 1 < I < 2n we see
that

2n

dim(ker Z'71) Zle + Z (1-1)Q;, (5.8.53)
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and
l 2n
dim(ker 2') = > iQ; + > 1Q;. (5.8.54)
i=1 i=l+1

Here we have used that B,,(0)* = 0 for k > m and that dim(ker B,,(0)*) = k&
for 1 < k < m. Subtracting expression ({5.8.53)) from expression (|5.8.54]) and

interpreting the numbers modulo 2, we find

0= -1+ S (- (- 1)@= (5.8.55)

i=l4+1

contradicting that @Q; is odd. We conclude that a largest [ such that @, is
odd does not exist. As Q. = 0 for all £ > 2n due to the size of Z, we see
that all By (0) appear an even number of times. This proves the lemma. [

Combining Lemmas [5.8.15| and [5.8.12] we see that Z € HZ has a vanishing
(or purely imaginary) spectrum, if and only if there exists an invertible
C € HP such that CZC~! if of the form with N in Jordan normal
form and with a vanishing (or purely imaginary) spectrum.

Proof of Theorem[5.8.13 Define Bgn,p(O) for p € P(n) to be the matrix

B, ,(0) := (Bn,g(O) Bng (0)> e HE. (5.8.56)

As before, the smooth map

T, HP nGl(2n,C) — HE (5.8.57)
Z v ZB, ,(0)Z7!

has constant rank equal to the dimension of Im(adp (0) lp). Note that

Z=1 € HE whenever Z € HE is invertible. This follows from the Cayley-
Hamilton theorem, or from the fact that H? is the image of an algebra of
equivariant maps under a morphism of algebras. It remains to determine the
dimension of Im(ad ) [#7), and to prove that the image of Wy, is indeed
an embedded manifold. We denote this image by S5 (0)- To determine the

sP

dimension, let us denote an element Z € HZ given by

7 (_); )Y(> (5.8.58)
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as Z = [X|Y]. We see that in this notation,

adg )(Z) = [adg, ) (X)[adg, @ (Y)]. Hence, as X and Y may be
chosen freely, we see that the complex dimension of the image of ad By (0)
equals at most n? —n +n? —n = 2n? — 2n. Hence the real dimension is at
most 4n? — 4n. Equality is furthermore only attained when p = (n).
Because ¥, is a smooth map of constant rank, there exists an open set
S C HE containing Id such that W, (S) is an embedded submanifold of HY
containing B, ,(0). Therefore, let (X,)2%, be a sequence of elements in
Sg, 0 C HE that has B, ,(0) as its limit. We need to show that X, lies
in U »(S) for large enough values of r. This would prove that Sg, 0 18
locally around B, p(0) an embedded submanifold, analogous to the proof of

Theorem [5.8.10L As we have the inclusions HY C Mat((C 2n) and Sp C
»(0)
Op, ,(0): We may use Lemma@ to write

X, = exp(—v,) By ,(0) exp(v,) (5.8.59)

for sufficiently large r, and for certain complex matrices v, that limit 0. As
the matrices exp(—wv,) limit Ida,, we see by Lemma [5.8.12 that there exist
matrices C,. € HE N Gl(2n, C) such that

X, = C.B,,(0)C, . (5.8.60)

It follows from Lemma that the C, may furthermore be chosen such
that their limit is Ids, as well. In particular, we see that C,. € S for suffi-
ciently large r, proving that X, € ¥,(S) for sufficiently large . This shows
that Sz L (0) is locally an embedded submanifold. Hence, by homogeneity,

it is so globally This proves the theorem.
O

In order to prove Theorem we will again introduce some notation.
Given an integer 1 < m < n and an elements £ = (p;p1,...p1) € Em, We
(re)introduce the open set

We ={z € R | 2; > 0,2; # x; for all 4,5 € {1,...1} such that i # j}.
(5.8.61)

Next, given { € E,,,, * € We and ¢ € P(n — m), we define the n times n
matrix

He 4(z) = (Bg(gl‘) B :7[1(0)) 7 (5.8.62)
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and the matrix

Heala) i= (Hfs( " H&E(iﬂ)) B (H&S(x) Hf,q(g_x)> € -

(5.8.63)

In the notation of the proof of Lemma|5.8.13| we have Hy ,(x) = [He 4(2)|0].
Lastly, we introduce the matrices

Ii(z) = (IP(()Z) 8) € Mat(C,n), (5.8.64)
for z € C!, and I¢(z) := [1¢(2)|0] € HE.
The following lemma will be used to count the dimensions of the manifolds

of Theorem [5.8.13

Lemma 5.8.16. The dimension of the image of EH& (@) Heal@®) 1s indepen-
'q ? '

dent of x € W¢. Furthermore, the operator EHs (). Heal@) is surjective if and

only if m =n. That is, if and only if He o(x) has only non-zero eigenvalues.

Proof. Let us denote by X ;, %, j € {1,2}, a block of a matrix X € Mat(C, n)

corresponding to the block structure of the matrix (5.8.64). For ¢ = 1 and
j = 2 we see that

(ﬁHg,q(x),ng,q(x) (X))12= Eanwuq(O)viB&(x) (X1,2)- (5.8.65)

As By _1,,4(0) and Be(x B¢ (z) have no eigenvalues in common, Lemmatells
us that the operator £, (0),Be(®) is a bijection. Similarly the map,

—m,q

X1+ LB (2),Bym.,0)(X2,1)

is a bijection, corresponding to the other off-diagonal block. For i = j =1
we see that

(Lre o) g &1 = L ) By (Xi) - (5.8.66)

As Be(x) and Be¢(x) = Be¢(—x) have no eigenvalues in common, the map
£B£(Z) () is again a bijection. Lastly, we have that

(‘Cng(m) He (m)( )22 = LB 4(0).Bomq(0)(X22) - (5.8.67)

By Lemma m this map is never a bijection (when n —m > 0). It is,
however, independent of € We. This proves that (the dimension of) the
image of L He o(2).He (@) is independent of x € W¢. It also proves that this
operator is a leeCthIl if and only if n = m. This concludes the proof. [
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Proof of Theorem[5.8.14, The proof will be analogous to that of Theorem
First, we define a smooth map for every pair (§,q) € =, X P(n —m)
and show that this map is of constant rank. Then we show that the images of
these maps are embedded manifolds, by comparing to the result of Theorem

b.84
Form e {1,...n}, £ € E,, and ¢ € P(n —m) we define the smooth map

e, HEY NGI(2n,C) x We — HE (5.8.68)
(A,2) — AHg 4(z) A7,
As was the case for C” and R, some of the sets
Seq = {Ue (A 2) | (A,2) € HE N GI(2n,C) x We} (5.8.69)

may coincide for different values of (£,¢q). However, after discarding dou-
bles they will be disjoint. It follows from Lemmas [5.8.12] and [5.8.15] that
any element of HY with a purely imaginary spectrum is either nilpotent or
contained in one of these sets. Similar to the proof of Theorem [5.8.11} the
image of the derivative of ¢ , at a point (4,z) € HE N GI(2n,C) x W is
given by

I (T(4,2) Ve q)

= {A[A7YV, He o (2)] A7 + AL (iw) A™' | (V,w) € HE x R'}

= {A[V, He o(x)]A7" + AL (iw) A~ | (V,w) € HE xR} (5.8.70)

The dimension of this space is equal to that of

{IV, He q(2)] + Ig(iw) | (V,w) € Hy x R'}.
Now, He ,(z) is a block-diagonal matrix. Hence, all the diagonal blocks of
an element of the form [V, H¢ ,(2)] have vanishing trace. Therefore, the only

element both of the form [V, He ,(2)] for V € HL and of the form I¢(iw) for
w € R is 0. Compare to the proof of Lemma m We conclude that

{[V. He g(2)] + Ie(iw) | (V,w) € HE x R'}
={[V, He ()] | V € HE} @ {I¢(iw) | w € R} (5.8.71)

In order to show that W¢ , is a map of constant rank, it remains to show
that the dimension of {[V, He ,(z)] | V € HE} is independent of the choice
of x € We. To this end, we write V = [V1]V3] in the notation of the proof of
Theorem [5.8:13] Writing out the commutator, we see that

[V, He o ()] =L (), He.y(z)(V1) | ﬁiH&q(QLH&q(w)(Vg)] (5.8.72)
=l-adn @ (V) | Lo @m0 (V2]
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From a similar reasoning as that in the proof of Lemma [5.8.7 we see that
the image of adpy,  (,) is independent of z € W,. Note in partlcular that
there exists a permutation matrix @ such that QHg 4(z)Q~! = Bg/(2') for
some ¢’ € =2, and with 2’ € V. This permutation matrix just reorders the
blocks to adhere to our convention to have partitions ordered, and does not
depend on x. The entries of 2’ are just those of z with an added 0 if n # m.
From this vve see that the complex dimension of the image of adp, ,(v) is
at most n? — n, with equality only when the partitions ¢ and p; tlll p; in
&= (p;p1,...p) are all trivial. From Lemmamwe see that the image of
Em’ He o(z) 18 likewise independent of . This shows that ¥ , is indeed
a smooth map of constant rank.

It also follows that the real dimension of the image of \il@] is equal to that of
dimg Im(ad 5 e, (o)|#r) + 1. By our bound on the dimension of the image of
adg, ,(2); combined with Lemma we see that this value cannot exceed
2(n® —n) +2n% + n = 4n? —n. For equahty we need [ = n. This value of [
forces m to be equal to n as well, and forces £ to equal ((1,...1);(1)...(1)).
From our remark about the image of ady, , (») and from the result of Lemma,
we see that the real dimension of Sg q is indeed equal to 4n? —n in
the unique case when [ = m = n.

To summarize so far, we have found that the sets S¢, are all immersed
manifolds of real dimension 4n? —n or lower. The exact value of 4n% —n only
occurs when all eigenvalues of He ,(x) are different (and hence unequal to
0). It remains to show that the sets S¢ , are in fact embedded submanifolds.
By the constant rank theorem, we know that for any x € W, there exists an
open set SxT C HENGI(2n, C)x W containing (Id, z) such that e ,(SXT)
is a submanifold of H% containing He ,(z). It remains to show that other
elements of S¢ ; do not come arbitrarily close to H, ¢,q(x). To this end, assume
the converse, so that (X,)2 is a sequence in S¢ ,\ W¢ ,(S x T) converging to
He 4(z). Let P be a permutation matrix such that PHe ,(z)P~" = Be (2')
for some & € Zy, and 2’ € Vg (consisting of entries in z, minus those
and possibly 0). Note that P depends only on ¢ and ¢. From their Jordan
normal forms, we see that f{g,q(y) € Og for all y € We. By conjugacy
invariance of Qg we conclude that S¢ , C O C Mat(C,2n). Therefore,
()52, := (PX, P72 is a sequence in O/ converging to Be (z'). By the
conclusion at the end of Theorem [5.8:4] we see that we may write

Y, = exp(—v,)(Be (2') + I (2")) exp(vy) , (5.8.73)

for large enough values of r. Here, the v, are complex matrices satisfying
lim v, = 0, so that hm exp(—v,) = Id. We furthermore have 2" € (iR)*

700

for k := dim(Vg), sat1sfy1ng lim 2" = 0.
r—00
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As in the proof of Theorem we want to conclude that P~ (Bg (') +
Ier(27))P is an element of the form H ,(z") € HE for large enough values
of r. As the matrices P~1(Bg (') + I¢/(2"))P are conjugate to X, € HE,
we will then conclude from Lemma [5.8:12) that this conjugation can be done
by elements in HZ. This will then lead to a contradiction, as it will force
the X, to lie in \i/&q(S x T) for large enough values of r.

To show that the matrices P~'(Bg (2') + I¢/(2")) P are of the form He ,(2")
for certain values of " € W¢, we need to show that the eigenvalues in the
blocks of Be/(z') + I¢/(2") come in prescribed pairs with opposite signs. In
particular, if m # n then a prescribed block has to be nilpotent. To this
end, we reintroduce the real-property from the proof of Theorem [5.8.11]
An element v € CF has this property if for some function 7 : {1,...k} —
{1,...k} we have v¢7(j)} = —v;. As the matrices Be (2') and Be(z') +
I¢/(27) are conjugate to elements in S¢ , C HE, we see that if A € iR occurs
as an eigenvalue, then so does —\ = A. Therefore, these matrices have
the real-property. Exactly as the proof of Lemma Be/(2') has this
property for exactly one function 79. (Note that P has been chosen such
that the different blocks of B¢/ (2”) have different eigenvalues, respecting the
notation.) It follows that for large enough values of r, the eigenvalues of
Bei(x') + I (27) satisty the real-property for 7 as well. This shows that the
eigenvalues in the blocks of Be/(z') + Ic/(2") are arranged so that we may
write P~1(Be (') 4 Ie/(2"))P = He 4(2") for certain 2" € We. Note that

lim z" = z. Returning to the X,., we see that for r large enough we have
r—00

X, = P texp(—v,)(Be (z') 4+ I/ (27)) exp(v,.) P (5.8.74)
= P lexp(—v, )PP~ (Be (a") + I (2")) PP~ exp(v,) P
— (P expl(— ) P) He g (27) (P exp(—0,)P)

As X, and He,(z") are both elements of H, we conclude from Lemma

n

5.8.12| that there exist invertible matrices C,. € HE such that

X, = O, He o(z")C;! (5.8.75)

(s

= V¢ o(Cry2").

As lim exp(—wv,) = Id, it also holds that lim P~!exp(—v,)P = Id. There-
r—00

T—00

fore, we see that the C). can be chosen such that lim C, = Id. Because it
T—>00

also holds that lim x" = xz, we see that for large enough values of r, we
r—00

have that X, € \ifg,q(S x T). This directly contradicts our assumptions, and
we conclude that Sg 4 is locally around H 4(x) an embedded submanifold.
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By homogeneity, S¢ 4 is globally an embedded submanifold. This proves the
theorem.
O

It follows from the proof of Theorem that the unique manifold of
highest dimension consists again of exactly those matrices with no double
eigenvalues.
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